1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
|
#!/usr/bin/python3
# Copyright (c) 2008-2025 the MRtrix3 contributors.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Covered Software is provided under this License on an "as is"
# basis, without warranty of any kind, either expressed, implied, or
# statutory, including, without limitation, warranties that the
# Covered Software is free of defects, merchantable, fit for a
# particular purpose or non-infringing.
# See the Mozilla Public License v. 2.0 for more details.
#
# For more details, see http://www.mrtrix.org/.
# Generates an unbiased group-average template via image registration of images to a midway space.
# note: deal with these warnings properly when we drop support for Python 2:
# pylint: disable=unspecified-encoding,consider-using-f-string
import json, math, os, re, shutil, sys
DEFAULT_RIGID_SCALES = [0.3,0.4,0.6,0.8,1.0,1.0]
DEFAULT_RIGID_LMAX = [2,2,2,4,4,4]
DEFAULT_AFFINE_SCALES = [0.3,0.4,0.6,0.8,1.0,1.0]
DEFAULT_AFFINE_LMAX = [2,2,2,4,4,4]
DEFAULT_NL_SCALES = [0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
DEFAULT_NL_NITER = [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
DEFAULT_NL_LMAX = [ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4]
REGISTRATION_MODES = ['rigid', 'affine', 'nonlinear', 'rigid_affine', 'rigid_nonlinear', 'affine_nonlinear', 'rigid_affine_nonlinear']
AGGREGATION_MODES = ["mean", "median"]
IMAGEEXT = 'mif nii mih mgh mgz img hdr'.split()
def usage(cmdline): #pylint: disable=unused-variable
cmdline.set_author('David Raffelt (david.raffelt@florey.edu.au) & Max Pietsch (maximilian.pietsch@kcl.ac.uk) & Thijs Dhollander (thijs.dhollander@gmail.com)')
cmdline.set_synopsis('Generates an unbiased group-average template from a series of images')
cmdline.add_description('First a template is optimised with linear registration (rigid and/or affine, both by default), then non-linear registration is used to optimise the template further.')
cmdline.add_argument("input_dir", nargs='+', help='Input directory containing all images used to build the template')
cmdline.add_argument("template", help='Corresponding output template image. For multi-contrast registration, provide multiple paired input_dir and template arguments. Example: WM_dir WM_template.mif GM_dir GM_template.mif')
options = cmdline.add_argument_group('Multi-contrast options')
options.add_argument('-mc_weight_initial_alignment', help='Weight contribution of each contrast to the initial alignment. Comma separated, default: 1.0')
options.add_argument('-mc_weight_rigid', help='Weight contribution of each contrast to the objective of rigid registration. Comma separated, default: 1.0')
options.add_argument('-mc_weight_affine', help='Weight contribution of each contrast to the objective of affine registration. Comma separated, default: 1.0')
options.add_argument('-mc_weight_nl', help='Weight contribution of each contrast to the objective of nonlinear registration. Comma separated, default: 1.0')
linoptions = cmdline.add_argument_group('Options for the linear registration')
linoptions.add_argument('-linear_no_pause', action='store_true', help='Do not pause the script if a linear registration seems implausible')
linoptions.add_argument('-linear_estimator', help='Specify estimator for intensity difference metric. Valid choices are: l1 (least absolute: |x|), l2 (ordinary least squares), lp (least powers: |x|^1.2), Default: None (no robust estimator used)')
linoptions.add_argument('-rigid_scale', help='Specify the multi-resolution pyramid used to build the rigid template, in the form of a list of scale factors (default: %s). This and affine_scale implicitly define the number of template levels' % ','.join([str(x) for x in DEFAULT_RIGID_SCALES]))
linoptions.add_argument('-rigid_lmax', help='Specify the lmax used for rigid registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the linear_scale factor list' % ','.join([str(x) for x in DEFAULT_RIGID_LMAX]))
linoptions.add_argument('-rigid_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default:50 for each scale). This must be a single number or a list of same length as the linear_scale factor list')
linoptions.add_argument('-affine_scale', help='Specify the multi-resolution pyramid used to build the affine template, in the form of a list of scale factors (default: %s). This and rigid_scale implicitly define the number of template levels' % ','.join([str(x) for x in DEFAULT_AFFINE_SCALES]))
linoptions.add_argument('-affine_lmax', help='Specify the lmax used for affine registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the linear_scale factor list' % ','.join([str(x) for x in DEFAULT_AFFINE_LMAX]))
linoptions.add_argument('-affine_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default:500 for each scale). This must be a single number or a list of same length as the linear_scale factor list')
nloptions = cmdline.add_argument_group('Options for the non-linear registration')
nloptions.add_argument('-nl_scale', help='Specify the multi-resolution pyramid used to build the non-linear template, in the form of a list of scale factors (default: %s). This implicitly defines the number of template levels' % ','.join([str(x) for x in DEFAULT_NL_SCALES]))
nloptions.add_argument('-nl_lmax', help='Specify the lmax used for non-linear registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the nl_scale factor list' % ','.join([str(x) for x in DEFAULT_NL_LMAX]))
nloptions.add_argument('-nl_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default: %s). The list must be the same length as the nl_scale factor list' % ','.join([str(x) for x in DEFAULT_NL_NITER]))
nloptions.add_argument('-nl_update_smooth', default='2.0', help='Regularise the gradient update field with Gaussian smoothing (standard deviation in voxel units, Default 2.0 x voxel_size)')
nloptions.add_argument('-nl_disp_smooth', default='1.0', help='Regularise the displacement field with Gaussian smoothing (standard deviation in voxel units, Default 1.0 x voxel_size)')
nloptions.add_argument('-nl_grad_step', default='0.5', help='The gradient step size for non-linear registration (Default: 0.5)')
options = cmdline.add_argument_group('Input, output and general options')
options.add_argument('-type', help='Specify the types of registration stages to perform. Options are "rigid" (perform rigid registration only which might be useful for intra-subject registration in longitudinal analysis), "affine" (perform affine registration) and "nonlinear" as well as cominations of registration types: %s. Default: rigid_affine_nonlinear' % ', '.join('"' + x + '"' for x in REGISTRATION_MODES if "_" in x), default='rigid_affine_nonlinear')
options.add_argument('-voxel_size', help='Define the template voxel size in mm. Use either a single value for isotropic voxels or 3 comma separated values.')
options.add_argument('-initial_alignment', default='mass', help='Method of alignment to form the initial template. Options are "mass" (default), "robust_mass" (requires masks), "geometric" and "none".')
options.add_argument('-mask_dir', help='Optionally input a set of masks inside a single directory, one per input image (with the same file name prefix). Using masks will speed up registration significantly. Note that masks are used for registration, not for aggregation. To exclude areas from aggregation, NaN-mask your input images.')
options.add_argument('-warp_dir', help='Output a directory containing warps from each input to the template. If the folder does not exist it will be created')
options.add_argument('-transformed_dir', help='Output a directory containing the input images transformed to the template. If the folder does not exist it will be created. For multi-contrast registration, provide comma separated list of directories.')
options.add_argument('-linear_transformations_dir', help='Output a directory containing the linear transformations used to generate the template. If the folder does not exist it will be created')
options.add_argument('-template_mask', help='Output a template mask. Only works if -mask_dir has been input. The template mask is computed as the intersection of all subject masks in template space.')
options.add_argument('-noreorientation', action='store_true', help='Turn off FOD reorientation in mrregister. Reorientation is on by default if the number of volumes in the 4th dimension corresponds to the number of coefficients in an antipodally symmetric spherical harmonic series (i.e. 6, 15, 28, 45, 66 etc)')
options.add_argument('-leave_one_out', help='Register each input image to a template that does not contain that image. Valid choices: 0, 1, auto. (Default: auto (true if n_subjects larger than 2 and smaller than 15)) ')
options.add_argument('-aggregate', help='Measure used to aggregate information from transformed images to the template image. Valid choices: %s. Default: mean' % ', '.join(AGGREGATION_MODES))
options.add_argument('-aggregation_weights', help='Comma separated file containing weights used for weighted image aggregation. Each row must contain the identifiers of the input image and its weight. Note that this weighs intensity values not transformations (shape).')
options.add_argument('-nanmask', action='store_true', help='Optionally apply masks to (transformed) input images using NaN values to specify include areas for registration and aggregation. Only works if -mask_dir has been input.')
options.add_argument('-copy_input', action='store_true', help='Copy input images and masks into local scratch directory.')
# ENH: add option to initialise warps / transformations
# Binds raw_input() to input() in Python2, so that input() can be used
# and the code will work on both Python 2 and 3
try:
input = raw_input #pylint: disable=redefined-builtin, invalid-name
except NameError:
pass
def abspath(arg, *args):
return os.path.abspath(os.path.join(arg, *args))
def relpath(arg, *args):
from mrtrix3 import app #pylint: disable=no-name-in-module, import-outside-toplevel
return os.path.relpath(os.path.join(arg, *args), app.WORKING_DIR)
def copy(src, dst, follow_symlinks=True):
"""Copy data but do not set mode bits. Return the file's destination.
mimics shutil.copy but without setting mode bits as shutil.copymode can fail on exotic mounts
(observed on cifs with file_mode=0777).
"""
if os.path.isdir(dst):
dst = os.path.join(dst, os.path.basename(src))
if sys.version_info[0] > 2:
shutil.copyfile(src, dst, follow_symlinks=follow_symlinks) # pylint: disable=unexpected-keyword-arg
else:
shutil.copyfile(src, dst)
return dst
def check_linear_transformation(transformation, cmd, max_scaling=0.5, max_shear=0.2, max_rot=None, pause_on_warn=True): #pylint: disable=too-many-positional-arguments
from mrtrix3 import app, run, utils #pylint: disable=no-name-in-module, import-outside-toplevel
if max_rot is None:
max_rot = 2 * math.pi
good = True
run.command('transformcalc ' + transformation + ' decompose ' + transformation + 'decomp')
if not os.path.isfile(transformation + 'decomp'): # does not exist if run with -continue option
app.console(transformation + 'decomp not found. skipping check')
return True
data = utils.load_keyval(transformation + 'decomp')
run.function(os.remove, transformation + 'decomp')
scaling = [float(value) for value in data['scaling']]
if any(a < 0 for a in scaling) or any(a > (1 + max_scaling) for a in scaling) or any(
a < (1 - max_scaling) for a in scaling):
app.warn("large scaling (" + str(scaling) + ") in " + transformation)
good = False
shear = [float(value) for value in data['shear']]
if any(abs(a) > max_shear for a in shear):
app.warn("large shear (" + str(shear) + ") in " + transformation)
good = False
rot_angle = float(data['angle_axis'][0])
if abs(rot_angle) > max_rot:
app.warn("large rotation (" + str(rot_angle) + ") in " + transformation)
good = False
if not good:
newcmd = []
what = ''
init_rotation_found = False
skip = 0
for element in cmd.split():
if skip:
skip -= 1
continue
if '_init_rotation' in element:
init_rotation_found = True
if '_init_matrix' in element:
skip = 1
continue
if 'affine_scale' in element:
assert what != 'rigid'
what = 'affine'
elif 'rigid_scale' in element:
assert what != 'affine'
what = 'rigid'
newcmd.append(element)
newcmd = " ".join(newcmd)
if not init_rotation_found:
app.console("replacing the transformation obtained with:")
app.console(cmd)
if what:
newcmd += ' -' + what + '_init_translation mass -' + what + '_init_rotation search'
app.console("by the one obtained with:")
app.console(newcmd)
run.command(newcmd, force=True)
return check_linear_transformation(transformation, newcmd, max_scaling, max_shear, max_rot, pause_on_warn=pause_on_warn)
if pause_on_warn:
app.warn("you might want to manually repeat mrregister with different parameters and overwrite the transformation file: \n%s" % transformation)
app.console('The command that failed the test was: \n' + cmd)
app.console('Working directory: \n' + os.getcwd())
input("press enter to continue population_template")
return good
def aggregate(inputs, output, contrast_idx, mode, force=True):
from mrtrix3 import MRtrixError, run # pylint: disable=no-name-in-module, import-outside-toplevel
images = [inp.ims_transformed[contrast_idx] for inp in inputs]
if mode == 'mean':
run.command(['mrmath', images, 'mean', '-keep_unary_axes', output], force=force)
elif mode == 'median':
run.command(['mrmath', images, 'median', '-keep_unary_axes', output], force=force)
elif mode == 'weighted_mean':
weights = [inp.aggregation_weight for inp in inputs]
assert not any(w is None for w in weights), weights
wsum = sum(map(float, weights))
if wsum <= 0:
raise MRtrixError("the sum of aggregetion weights has to be positive")
cmd = ['mrcalc']
for weight, image in zip(weights, images):
if float(weight) != 0:
cmd += [image, weight, '-mult'] + (['-add'] if len(cmd) > 1 else [])
cmd += ['%.16f' % wsum, '-div', output]
run.command(cmd, force=force)
else:
raise MRtrixError("aggregation mode %s not understood" % mode)
def inplace_nan_mask(images, masks):
from mrtrix3 import run # pylint: disable=no-name-in-module, import-outside-toplevel
assert len(images) == len(masks), (len(images), len(masks))
for image, mask in zip(images, masks):
target_dir = os.path.split(image)[0]
masked = os.path.join(target_dir, '__' + os.path.split(image)[1])
run.command("mrcalc " + mask + " " + image + " nan -if " + masked, force=True)
run.function(shutil.move, masked, image)
def calculate_isfinite(inputs, contrasts):
from mrtrix3 import run, path # pylint: disable=no-name-in-module, import-outside-toplevel
agg_weights = [float(inp.aggregation_weight) for inp in inputs if inp.aggregation_weight is not None]
for cid in range(contrasts.n_contrasts):
for inp in inputs:
if contrasts.n_volumes[cid] > 0:
cmd = 'mrconvert ' + inp.ims_transformed[cid] + ' -coord 3 0 - | mrcalc - -finite'
else:
cmd = 'mrcalc ' + inp.ims_transformed[cid] + ' -finite'
if inp.aggregation_weight:
cmd += ' %s -mult ' % inp.aggregation_weight
cmd += ' isfinite%s/%s.mif' % (contrasts.suff[cid], inp.uid)
run.command(cmd, force=True)
for cid in range(contrasts.n_contrasts):
cmd = ['mrmath', path.all_in_dir('isfinite%s' % contrasts.suff[cid]), 'sum']
if agg_weights:
agg_weight_norm = str(float(len(agg_weights)) / sum(agg_weights))
cmd += ['-', '|', 'mrcalc', '-', agg_weight_norm, '-mult']
run.command(cmd + [contrasts.isfinite_count[cid]], force=True)
def get_common_postfix(file_list):
return os.path.commonprefix([i[::-1] for i in file_list])[::-1]
def get_common_prefix(file_list):
return os.path.commonprefix(file_list)
class Contrasts(object):
"""
Class that parses arguments and holds information specific to each image contrast
Attributes
----------
suff: list of str
identifiers used for contrast-specific filenames and folders ['_c0', '_c1', ...]
names: list of str
derived from constrast-specific input folder
templates_out: list of str
full path to output templates
templates: list of str
holds current template names during registration
n_volumes: list of int
number of volumes in each contrast
fod_reorientation: list of bool
whether to perform FOD reorientation with mrtransform
isfinite_count: list of str
filenames of images holding (weighted) number of finite-valued voxels across all images
mc_weight_<mode>: list of str
contrast-specific weight used during initialisation / registration
<mode>_weight_option: list of str
weight option to be passed to mrregister, <mode> = {'initial_alignment', 'rigid', 'affine', 'nl'}
n_contrasts: int
"""
def __init__(self):
from mrtrix3 import MRtrixError, path, app # pylint: disable=no-name-in-module, import-outside-toplevel
n_contrasts = len(app.ARGS.input_dir)
self.suff = ["_c" + c for c in map(str, range(n_contrasts))]
self.names = [os.path.relpath(f, os.path.commonprefix(app.ARGS.input_dir)) for f in app.ARGS.input_dir]
self.templates_out = [path.from_user(t, True) for t in app.ARGS.template]
self.mc_weight_initial_alignment = [None for _ in range(self.n_contrasts)]
self.mc_weight_rigid = [None for _ in range(self.n_contrasts)]
self.mc_weight_affine = [None for _ in range(self.n_contrasts)]
self.mc_weight_nl = [None for _ in range(self.n_contrasts)]
self.initial_alignment_weight_option = [None for _ in range(self.n_contrasts)]
self.rigid_weight_option = [None for _ in range(self.n_contrasts)]
self.affine_weight_option = [None for _ in range(self.n_contrasts)]
self.nl_weight_option = [None for _ in range(self.n_contrasts)]
self.isfinite_count = ['isfinite' + c + '.mif' for c in self.suff]
self.templates = [None for _ in range(self.n_contrasts)]
self.n_volumes = [None for _ in range(self.n_contrasts)]
self.fod_reorientation = [None for _ in range(self.n_contrasts)]
for mode in ['initial_alignment', 'rigid', 'affine', 'nl']:
opt = app.ARGS.__dict__.get('mc_weight_' + mode, None)
if opt:
if n_contrasts == 1:
raise MRtrixError('mc_weight_' + mode+' requires multiple input contrasts')
opt = opt.split(',')
if len(opt) != n_contrasts:
raise MRtrixError('mc_weight_' + mode+' needs to be defined for each contrast')
else:
opt = ["1"] * n_contrasts
self.__dict__['mc_weight_%s' % mode] = opt
self.__dict__['%s_weight_option' % mode] = ' -mc_weights '+','.join(opt)+' ' if n_contrasts > 1 else ''
if len(self.templates_out) != n_contrasts:
raise MRtrixError('number of templates (%i) does not match number of input directories (%i)' %
(len(self.templates_out), n_contrasts))
@property
def n_contrasts(self):
return len(self.suff)
def __repr__(self, *args, **kwargs):
text = ''
for cid in range(self.n_contrasts):
text += '\tcontrast: %s, template: %s, suffix: %s\n' % (self.names[cid], self.templates_out[cid], self.suff[cid])
return text
class Input(object):
"""
Class that holds input information specific to a single image (multiple contrasts)
Attributes
----------
uid: str
unique identifier for these input image(s), does not contain spaces
ims_path: list of str
full path to input images, shell quoted OR paths to cached file if cache_local was called
msk_path: str
full path to input mask, shell quoted OR path to cached file if cache_local was called
ims_filenames : list of str
for each contrast the input file paths stripped of their respective directories. Used for final output only.
msk_filename: str
as ims_filenames
ims_transformed: list of str
input_transformed<contrast identifier>/<uid>.mif
msk_transformed: list of str
mask_transformed/<uid>.mif
aggregation_weight: float
weights used in image aggregation that forms the template. Has to be normalised across inputs.
_im_directories : list of str
full path to user-provided input directories containing the input images, one for each contrast
_msk_directory: str
full path to user-provided mask directory
_local_ims: list of str
path to cached input images
_local_msk: str
path to cached input mask
Methods
-------
cache_local()
copy files into folders in current working directory. modifies _local_ims and _local_msk
"""
def __init__(self, uid, filenames, directories, contrasts, mask_filename='', mask_directory=''): #pylint: disable=too-many-positional-arguments
self.contrasts = contrasts
self.uid = uid
assert self.uid, "UID empty"
assert self.uid.count(' ') == 0, 'UID "%s" contains whitespace' % self.uid
assert len(directories) == len(filenames)
self.ims_filenames = filenames
self._im_directories = directories
self.msk_filename = mask_filename
self._msk_directory = mask_directory
n_contrasts = len(contrasts)
self.ims_transformed = [os.path.join('input_transformed'+contrasts[cid], uid + '.mif') for cid in range(n_contrasts)]
self.msk_transformed = os.path.join('mask_transformed', uid + '.mif')
self.aggregation_weight = None
self._local_ims = []
self._local_msk = None
def __repr__(self, *args, **kwargs):
text = '\nInput ['
for key in sorted([k for k in self.__dict__ if not k.startswith('_')]):
text += '\n\t' + str(key) + ': ' + str(self.__dict__[key])
text += '\n]'
return text
def info(self):
message = ['input: ' + self.uid]
if self.aggregation_weight:
message += ['agg weight: ' + self.aggregation_weight]
for csuff, fname in zip(self.contrasts, self.ims_filenames):
message += [((csuff + ': ') if csuff else '') + '"' + fname + '"']
if self.msk_filename:
message += ['mask: ' + self.msk_filename]
return ', '.join(message)
def cache_local(self):
from mrtrix3 import run, path # pylint: disable=no-name-in-module, import-outside-toplevel
contrasts = self.contrasts
for cid, csuff in enumerate(contrasts):
if not os.path.isdir('input' + csuff):
path.make_dir('input' + csuff)
run.command('mrconvert ' + self.ims_path[cid] + ' ' + os.path.join('input' + csuff, self.uid + '.mif'))
self._local_ims = [os.path.join('input' + csuff, self.uid + '.mif') for csuff in contrasts]
if self.msk_filename:
if not os.path.isdir('mask'):
path.make_dir('mask')
run.command('mrconvert ' + self.msk_path + ' ' + os.path.join('mask', self.uid + '.mif'))
self._local_msk = os.path.join('mask', self.uid + '.mif')
def get_ims_path(self, quoted=True):
""" return path to input images """
from mrtrix3 import path # pylint: disable=no-name-in-module, import-outside-toplevel
if self._local_ims:
return self._local_ims
return [path.from_user(abspath(d, f), quoted) for d, f in zip(self._im_directories, self.ims_filenames)]
ims_path = property(get_ims_path)
def get_msk_path(self, quoted=True):
""" return path to input mask """
from mrtrix3 import path # pylint: disable=no-name-in-module, import-outside-toplevel
if self._local_msk:
return self._local_msk
return path.from_user(os.path.join(self._msk_directory, self.msk_filename), quoted) if self.msk_filename else None
msk_path = property(get_msk_path)
def parse_input_files(in_files, mask_files, contrasts, f_agg_weight=None, whitespace_repl='_'):
"""
matches input images across contrasts and pair them with masks.
extracts unique identifiers from mask and image filenames by stripping common pre and postfix (per contrast and for masks)
unique identifiers contain ASCII letters, numbers and '_' but no whitespace which is replaced by whitespace_repl
in_files: list of lists
the inner list holds filenames specific to a contrast
mask_files:
can be empty
returns list of Input
checks: 3d_nonunity
TODO check if no common grid & trafo across contrasts (only relevant for robust init?)
"""
from mrtrix3 import MRtrixError, app, path, image # pylint: disable=no-name-in-module, import-outside-toplevel
contrasts = contrasts.suff
inputs = []
def paths_to_file_uids(paths, prefix, postfix):
""" strip pre and postfix from filename, replace whitespace characters """
uid_path = {}
uids = []
for path in paths:
uid = re.sub(re.escape(postfix)+'$', '', re.sub('^'+re.escape(prefix), '', os.path.split(path)[1]))
uid = re.sub(r'\s+', whitespace_repl, uid)
if not uid:
raise MRtrixError('No uniquely identifiable part of filename "' + path + '" '
'after prefix and postfix substitution '
'with prefix "' + prefix + '" and postfix "' + postfix + '"')
app.debug('UID mapping: "' + path + '" --> "' + uid + '"')
if uid in uid_path:
raise MRtrixError('unique file identifier is not unique: "' + uid + '" mapped to "' + path + '" and "' + uid_path[uid] +'"')
uid_path[uid] = path
uids.append(uid)
return uids
# mask uids
mask_uids = []
if mask_files:
mask_common_postfix = get_common_postfix(mask_files)
if not mask_common_postfix:
raise MRtrixError('mask filenames do not have a common postfix')
mask_common_prefix = get_common_prefix([os.path.split(m)[1] for m in mask_files])
mask_uids = paths_to_file_uids(mask_files, mask_common_prefix, mask_common_postfix)
if app.VERBOSITY > 1:
app.console('mask uids:' + str(mask_uids))
# images uids
common_postfix = [get_common_postfix(files) for files in in_files]
common_prefix = [get_common_prefix(files) for files in in_files]
# xcontrast_xsubject_pre_postfix: prefix and postfix of the common part across contrasts and subjects,
# without image extensions and leading or trailing '_' or '-'
xcontrast_xsubject_pre_postfix = [get_common_postfix(common_prefix).lstrip('_-'),
get_common_prefix([re.sub('.('+'|'.join(IMAGEEXT)+')(.gz)?$', '', pfix).rstrip('_-') for pfix in common_postfix])]
if app.VERBOSITY > 1:
app.console("common_postfix: " + str(common_postfix))
app.console("common_prefix: " + str(common_prefix))
app.console("xcontrast_xsubject_pre_postfix: " + str(xcontrast_xsubject_pre_postfix))
for ipostfix, postfix in enumerate(common_postfix):
if not postfix:
raise MRtrixError('image filenames do not have a common postfix:\n' + '\n'.join(in_files[ipostfix]))
c_uids = []
for cid, files in enumerate(in_files):
c_uids.append(paths_to_file_uids(files, common_prefix[cid], common_postfix[cid]))
if app.VERBOSITY > 1:
app.console('uids by contrast:' + str(c_uids))
# join images and masks
for ifile, fname in enumerate(in_files[0]):
uid = c_uids[0][ifile]
fnames = [fname]
dirs = [abspath(path.from_user(app.ARGS.input_dir[0], False))]
if len(contrasts) > 1:
for cid in range(1, len(contrasts)):
dirs.append(abspath(path.from_user(app.ARGS.input_dir[cid], False)))
image.check_3d_nonunity(os.path.join(dirs[cid], in_files[cid][ifile]))
if uid != c_uids[cid][ifile]:
raise MRtrixError('no matching image was found for image %s and contrasts %s and %s.' % (fname, dirs[0], dirs[cid]))
fnames.append(in_files[cid][ifile])
if mask_files:
if uid not in mask_uids:
raise MRtrixError('no matching mask image was found for input image ' + fname + ' with uid "'+uid+'". '
'Mask uid candidates: ' + ', '.join(['"%s"' % m for m in mask_uids]))
index = mask_uids.index(uid)
# uid, filenames, directories, contrasts, mask_filename = '', mask_directory = '', agg_weight = None
inputs.append(Input(uid, fnames, dirs, contrasts,
mask_filename=mask_files[index], mask_directory=abspath(path.from_user(app.ARGS.mask_dir, False))))
else:
inputs.append(Input(uid, fnames, dirs, contrasts))
# parse aggregation weights and match to inputs
if f_agg_weight:
import csv # pylint: disable=import-outside-toplevel
try:
with open(f_agg_weight, 'r') as fweights:
agg_weights = dict((row[0].strip(), row[1].strip()) for row in csv.reader(fweights, delimiter=',', quotechar='#'))
except UnicodeDecodeError:
with open(f_agg_weight, 'r') as fweights:
reader = csv.reader(fweights.read().decode('utf-8', errors='replace'), delimiter=',', quotechar='#')
agg_weights = dict((row[0].strip(), row[1].strip()) for row in reader)
pref = '^' + re.escape(get_common_prefix(list(agg_weights.keys())))
suff = re.escape(get_common_postfix(list(agg_weights.keys()))) + '$'
agg_weights = {re.sub(suff, '', re.sub(pref, '', item[0])):item[1] for item in agg_weights.items()}
for inp in inputs:
if inp.uid not in agg_weights:
raise MRtrixError('aggregation weight not found for input "%s"' % inp.uid)
inp.aggregation_weight = agg_weights[inp.uid]
app.console('Using aggregation weights ' + f_agg_weight)
weights = [float(inp.aggregation_weight) for inp in inputs if inp.aggregation_weight is not None]
if sum(weights) <= 0:
raise MRtrixError('Sum of aggregation weights is not positive: ' + str(weights))
if any(w < 0 for w in weights):
app.warn('Negative aggregation weights: ' + str(weights))
return inputs, xcontrast_xsubject_pre_postfix
def execute(): #pylint: disable=unused-variable
from mrtrix3 import MRtrixError, app, image, matrix, path, run #pylint: disable=no-name-in-module, import-outside-toplevel
if not app.ARGS.type in REGISTRATION_MODES:
raise MRtrixError("registration type must be one of %s. provided: %s" % (str(REGISTRATION_MODES), app.ARGS.type))
dorigid = "rigid" in app.ARGS.type
doaffine = "affine" in app.ARGS.type
dolinear = dorigid or doaffine
dononlinear = "nonlinear" in app.ARGS.type
assert (dorigid + doaffine + dononlinear >= 1), "FIXME: registration type not valid"
input_output = app.ARGS.input_dir + [app.ARGS.template]
n_contrasts = len(input_output) // 2
if len(input_output) != 2 * n_contrasts:
raise MRtrixError('expected two arguments per contrast, received %i: %s' % (len(input_output), ', '.join(input_output)))
if n_contrasts > 1:
app.console('Generating population template using multi-contrast registration')
# reorder arguments for multi-contrast registration as after command line parsing app.ARGS.input_dir holds all but one argument
app.ARGS.input_dir = []
app.ARGS.template = []
for i_contrast in range(n_contrasts):
inargs = (input_output[i_contrast*2], input_output[i_contrast*2+1])
if not os.path.isdir(inargs[0]):
raise MRtrixError('input directory %s not found' % inargs[0])
app.ARGS.input_dir.append(relpath(inargs[0]))
app.ARGS.template.append(relpath(inargs[1]))
cns = Contrasts()
app.debug(str(cns))
in_files = [sorted(path.all_in_dir(input_dir, dir_path=False)) for input_dir in app.ARGS.input_dir]
if len(in_files[0]) <= 1:
raise MRtrixError('Not enough images found in input directory ' + app.ARGS.input_dir[0] +
'. More than one image is needed to generate a population template')
if n_contrasts > 1:
for cid in range(1, n_contrasts):
if len(in_files[cid]) != len(in_files[0]):
raise MRtrixError('Found %i images in input directory %s ' % (len(app.ARGS.input_dir[0]), app.ARGS.input_dir[0]) +
'but %i input images in %s.' % (len(app.ARGS.input_dir[cid]), app.ARGS.input_dir[cid]))
else:
app.console('Generating a population-average template from ' + str(len(in_files[0])) + ' input images')
if n_contrasts > 1:
app.console('using ' + str(len(in_files)) + ' contrasts for each input image')
voxel_size = None
if app.ARGS.voxel_size:
voxel_size = app.ARGS.voxel_size.split(',')
if len(voxel_size) == 1:
voxel_size = voxel_size * 3
try:
if len(voxel_size) != 3:
raise ValueError
[float(v) for v in voxel_size] #pylint: disable=expression-not-assigned
except ValueError:
raise MRtrixError('voxel size needs to be a single or three comma-separated floating point numbers; received: ' + str(app.ARGS.voxel_size))
agg_measure = 'mean'
if app.ARGS.aggregate is not None:
if not app.ARGS.aggregate in AGGREGATION_MODES:
app.error("aggregation type must be one of %s. provided: %s" % (str(AGGREGATION_MODES), app.ARGS.aggregate))
agg_measure = app.ARGS.aggregate
agg_weights = app.ARGS.aggregation_weights
if agg_weights is not None:
agg_measure = "weighted_" + agg_measure
if agg_measure != 'weighted_mean':
app.error("aggregation weights require '-aggregate mean' option. provided: %s" % (app.ARGS.aggregate))
if not os.path.isfile(app.ARGS.aggregation_weights):
app.error("aggregation weights file not found: %s" % app.ARGS.aggregation_weights)
initial_alignment = app.ARGS.initial_alignment
if initial_alignment not in ["mass", "robust_mass", "geometric", "none"]:
raise MRtrixError('initial_alignment must be one of ' + " ".join(["mass", "robust_mass", "geometric", "none"]) + " provided: " + str(initial_alignment))
linear_estimator = app.ARGS.linear_estimator
if linear_estimator and not linear_estimator.lower() == 'none':
if not dolinear:
raise MRtrixError('linear_estimator specified when no linear registration is requested')
if linear_estimator not in ["l1", "l2", "lp"]:
raise MRtrixError('linear_estimator must be one of ' + " ".join(["l1", "l2", "lp"]) + " provided: " + str(linear_estimator))
use_masks = False
mask_files = []
if app.ARGS.mask_dir:
use_masks = True
app.ARGS.mask_dir = relpath(app.ARGS.mask_dir)
if not os.path.isdir(app.ARGS.mask_dir):
raise MRtrixError('mask directory not found')
mask_files = sorted(path.all_in_dir(app.ARGS.mask_dir, dir_path=False))
if len(mask_files) < len(in_files[0]):
raise MRtrixError('there are not enough mask images for the number of images in the input directory')
if not use_masks:
app.warn('no masks input. Use input masks to reduce computation time and improve robustness')
if app.ARGS.template_mask and not use_masks:
raise MRtrixError('you cannot output a template mask because no subject masks were input using -mask_dir')
nanmask_input = app.ARGS.nanmask
if nanmask_input and not use_masks:
raise MRtrixError('you cannot use NaN masking when no subject masks were input using -mask_dir')
ins, xcontrast_xsubject_pre_postfix = parse_input_files(in_files, mask_files, cns, agg_weights)
leave_one_out = 'auto'
if app.ARGS.leave_one_out is not None:
leave_one_out = app.ARGS.leave_one_out
if not leave_one_out in ['0', '1', 'auto']:
raise MRtrixError('leave_one_out not understood: ' + str(leave_one_out))
if leave_one_out == 'auto':
leave_one_out = 2 < len(ins) < 15
else:
leave_one_out = bool(int(leave_one_out))
if leave_one_out:
app.console('performing leave-one-out registration')
# check that at sum of weights is positive for any grouping if weighted aggregation is used
weights = [float(inp.aggregation_weight) for inp in ins if inp.aggregation_weight is not None]
if weights and sum(weights) - max(weights) <= 0:
raise MRtrixError('leave-one-out registration requires positive aggregation weights in all groupings')
noreorientation = app.ARGS.noreorientation
do_pause_on_warn = True
if app.ARGS.linear_no_pause:
do_pause_on_warn = False
if not dolinear:
raise MRtrixError("linear option set when no linear registration is performed")
if len(app.ARGS.template) != n_contrasts:
raise MRtrixError('mismatch between number of output templates (%i) ' % len(app.ARGS.template) +
'and number of contrasts (%i)' % n_contrasts)
for templ in app.ARGS.template:
app.check_output_path(templ)
if app.ARGS.warp_dir:
app.ARGS.warp_dir = relpath(app.ARGS.warp_dir)
app.check_output_path(app.ARGS.warp_dir)
if app.ARGS.transformed_dir:
app.ARGS.transformed_dir = [relpath(d) for d in app.ARGS.transformed_dir.split(',')]
if len(app.ARGS.transformed_dir) != n_contrasts:
raise MRtrixError('require multiple comma separated transformed directories if multi-contrast registration is used')
for tdir in app.ARGS.transformed_dir:
app.check_output_path(tdir)
if app.ARGS.linear_transformations_dir:
if not dolinear:
raise MRtrixError("linear option set when no linear registration is performed")
app.ARGS.linear_transformations_dir = relpath(app.ARGS.linear_transformations_dir)
app.check_output_path(app.ARGS.linear_transformations_dir)
# automatically detect SH series in each contrast
do_fod_registration = False # in any contrast
cns.n_volumes = []
cns.fod_reorientation = []
for cid in range(n_contrasts):
header = image.Header(ins[0].get_ims_path(False)[cid])
image_size = header.size()
if len(image_size) < 3 or len(image_size) > 4:
raise MRtrixError('only 3 and 4 dimensional images can be used to build a template')
if len(image_size) == 4:
cns.fod_reorientation.append(header.is_sh() and not noreorientation)
cns.n_volumes.append(image_size[3])
do_fod_registration = do_fod_registration or cns.fod_reorientation[-1]
else:
cns.fod_reorientation.append(False)
cns.n_volumes.append(0)
if do_fod_registration:
app.console("SH Series detected, performing FOD registration in contrast: " +
', '.join(app.ARGS.input_dir[cid] for cid in range(n_contrasts) if cns.fod_reorientation[cid]))
c_mrtransform_reorientation = [' -reorient_fod ' + ('yes' if cns.fod_reorientation[cid] else 'no') + ' '
for cid in range(n_contrasts)]
if nanmask_input:
app.console("NaN masking transformed images")
# rigid options
if app.ARGS.rigid_scale:
rigid_scales = [float(x) for x in app.ARGS.rigid_scale.split(',')]
if not dorigid:
raise MRtrixError("rigid_scales option set when no rigid registration is performed")
else:
rigid_scales = DEFAULT_RIGID_SCALES
if app.ARGS.rigid_lmax:
if not dorigid:
raise MRtrixError("rigid_lmax option set when no rigid registration is performed")
rigid_lmax = [int(x) for x in app.ARGS.rigid_lmax.split(',')]
if do_fod_registration and len(rigid_scales) != len(rigid_lmax):
raise MRtrixError('rigid_scales and rigid_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(rigid_scales), len(rigid_lmax)))
else:
rigid_lmax = DEFAULT_RIGID_LMAX
rigid_niter = [100] * len(rigid_scales)
if app.ARGS.rigid_niter:
if not dorigid:
raise MRtrixError("rigid_niter specified when no rigid registration is performed")
rigid_niter = [int(x) for x in app.ARGS.rigid_niter.split(',')]
if len(rigid_niter) == 1:
rigid_niter = rigid_niter * len(rigid_scales)
elif len(rigid_scales) != len(rigid_niter):
raise MRtrixError('rigid_scales and rigid_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(rigid_scales), len(rigid_niter)))
# affine options
if app.ARGS.affine_scale:
affine_scales = [float(x) for x in app.ARGS.affine_scale.split(',')]
if not doaffine:
raise MRtrixError("affine_scale option set when no affine registration is performed")
else:
affine_scales = DEFAULT_AFFINE_SCALES
if app.ARGS.affine_lmax:
if not doaffine:
raise MRtrixError("affine_lmax option set when no affine registration is performed")
affine_lmax = [int(x) for x in app.ARGS.affine_lmax.split(',')]
if do_fod_registration and len(affine_scales) != len(affine_lmax):
raise MRtrixError('affine_scales and affine_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(affine_scales), len(affine_lmax)))
else:
affine_lmax = DEFAULT_AFFINE_LMAX
affine_niter = [500] * len(affine_scales)
if app.ARGS.affine_niter:
if not doaffine:
raise MRtrixError("affine_niter specified when no affine registration is performed")
affine_niter = [int(x) for x in app.ARGS.affine_niter.split(',')]
if len(affine_niter) == 1:
affine_niter = affine_niter * len(affine_scales)
elif len(affine_scales) != len(affine_niter):
raise MRtrixError('affine_scales and affine_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(affine_scales), len(affine_niter)))
linear_scales = []
linear_lmax = []
linear_niter = []
linear_type = []
if dorigid:
linear_scales += rigid_scales
linear_lmax += rigid_lmax
linear_niter += rigid_niter
linear_type += ['rigid'] * len(rigid_scales)
if doaffine:
linear_scales += affine_scales
linear_lmax += affine_lmax
linear_niter += affine_niter
linear_type += ['affine'] * len(affine_scales)
assert len(linear_type) == len(linear_scales)
assert len(linear_scales) == len(linear_niter)
if do_fod_registration:
if len(linear_lmax) != len(linear_niter):
mismatch = []
if len(rigid_lmax) != len(rigid_niter):
mismatch += ['rigid: lmax stages: %s, niter stages: %s' % (len(rigid_lmax), len(rigid_niter))]
if len(affine_lmax) != len(affine_niter):
mismatch += ['affine: lmax stages: %s, niter stages: %s' % (len(affine_lmax), len(affine_niter))]
raise MRtrixError('linear registration: lmax and niter schedules are not equal in length: %s' % (', '.join(mismatch)))
app.console('-' * 60)
app.console('initial alignment of images: %s' % initial_alignment)
app.console('-' * 60)
if n_contrasts > 1:
for cid in range(n_contrasts):
app.console('\tcontrast "%s": %s, ' % (cns.suff[cid], cns.names[cid]) +
'objective weight: %s' % cns.mc_weight_initial_alignment[cid])
if dolinear:
app.console('-' * 60)
app.console('linear registration stages:')
app.console('-' * 60)
if n_contrasts > 1:
for cid in range(n_contrasts):
msg = '\tcontrast "%s": %s' % (cns.suff[cid], cns.names[cid])
if 'rigid' in linear_type:
msg += ', objective weight rigid: %s' % cns.mc_weight_rigid[cid]
if 'affine' in linear_type:
msg += ', objective weight affine: %s' % cns.mc_weight_affine[cid]
app.console(msg)
if do_fod_registration:
for istage, [tpe, scale, lmax, niter] in enumerate(zip(linear_type, linear_scales, linear_lmax, linear_niter)):
app.console('(%02i) %s scale: %.4f, niter: %i, lmax: %i' % (istage, tpe.ljust(9), scale, niter, lmax))
else:
for istage, [tpe, scale, niter] in enumerate(zip(linear_type, linear_scales, linear_niter)):
app.console('(%02i) %s scale: %.4f, niter: %i, no reorientation' % (istage, tpe.ljust(9), scale, niter))
datatype_option = ' -datatype float32'
outofbounds_option = ' -nan'
if not dononlinear:
nl_scales = []
nl_lmax = []
nl_niter = []
if app.ARGS.warp_dir:
raise MRtrixError('warp_dir specified when no nonlinear registration is performed')
else:
nl_scales = [float(x) for x in app.ARGS.nl_scale.split(',')] if app.ARGS.nl_scale else DEFAULT_NL_SCALES
nl_niter = [int(x) for x in app.ARGS.nl_niter.split(',')] if app.ARGS.nl_niter else DEFAULT_NL_NITER
nl_lmax = [int(x) for x in app.ARGS.nl_lmax.split(',')] if app.ARGS.nl_lmax else DEFAULT_NL_LMAX
if len(nl_scales) != len(nl_niter):
raise MRtrixError('nl_scales and nl_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(nl_scales), len(nl_niter)))
app.console('-' * 60)
app.console('nonlinear registration stages:')
app.console('-' * 60)
if n_contrasts > 1:
for cid in range(n_contrasts):
app.console('\tcontrast "%s": %s, objective weight: %s' % (cns.suff[cid], cns.names[cid], cns.mc_weight_nl[cid]))
if do_fod_registration:
if len(nl_scales) != len(nl_lmax):
raise MRtrixError('nl_scales and nl_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(nl_scales), len(nl_lmax)))
if do_fod_registration:
for istage, [scale, lmax, niter] in enumerate(zip(nl_scales, nl_lmax, nl_niter)):
app.console('(%02i) nonlinear scale: %.4f, niter: %i, lmax: %i' % (istage, scale, niter, lmax))
else:
for istage, [scale, niter] in enumerate(zip(nl_scales, nl_niter)):
app.console('(%02i) nonlinear scale: %.4f, niter: %i, no reorientation' % (istage, scale, niter))
app.console('-' * 60)
app.console('input images:')
app.console('-' * 60)
for inp in ins:
app.console('\t' + inp.info())
app.make_scratch_dir()
app.goto_scratch_dir()
for contrast in cns.suff:
path.make_dir('input_transformed' + contrast)
for contrast in cns.suff:
path.make_dir('isfinite' + contrast)
path.make_dir('linear_transforms_initial')
path.make_dir('linear_transforms')
for level in range(0, len(linear_scales)):
path.make_dir('linear_transforms_%02i' % level)
for level in range(0, len(nl_scales)):
path.make_dir('warps_%02i' % level)
if use_masks:
path.make_dir('mask_transformed')
write_log = app.VERBOSITY >= 2
if write_log:
path.make_dir('log')
if initial_alignment == 'robust_mass':
if not use_masks:
raise MRtrixError('robust_mass initial alignment requires masks')
path.make_dir('robust')
if app.ARGS.copy_input:
app.console('Copying images into scratch directory')
for inp in ins:
inp.cache_local()
# Make initial template in average space using first contrast
app.console('Generating initial template')
input_filenames = [inp.get_ims_path(False)[0] for inp in ins]
if voxel_size is None:
run.command(['mraverageheader', input_filenames, 'average_header.mif', '-fill'])
else:
run.command(['mraverageheader', '-fill', input_filenames, '-', '|',
'mrgrid', '-', 'regrid', '-voxel', ','.join(map(str, voxel_size)), 'average_header.mif'])
# crop average space to extent defined by original masks
if use_masks:
progress = app.ProgressBar('Importing input masks to average space for template cropping', len(ins))
for inp in ins:
run.command('mrtransform ' + inp.msk_path + ' -interp nearest -template average_header.mif ' + inp.msk_transformed)
progress.increment()
progress.done()
run.command(['mrmath', [inp.msk_transformed for inp in ins], 'max', 'mask_initial.mif'])
run.command('mrgrid average_header.mif crop -mask mask_initial.mif average_header_cropped.mif')
run.function(os.remove, 'mask_initial.mif')
run.function(os.remove, 'average_header.mif')
run.function(shutil.move, 'average_header_cropped.mif', 'average_header.mif')
progress = app.ProgressBar('Erasing temporary mask images', len(ins))
for inp in ins:
run.function(os.remove, inp.msk_transformed)
progress.increment()
progress.done()
# create average space headers for other contrasts
if n_contrasts > 1:
avh3d = 'average_header3d.mif'
avh4d = 'average_header4d.mif'
if len(image.Header('average_header.mif').size()) == 3:
run.command('mrconvert average_header.mif ' + avh3d)
else:
run.command('mrconvert average_header.mif -coord 3 0 -axes 0,1,2 ' + avh3d)
run.command('mrconvert ' + avh3d + ' -axes 0,1,2,-1 ' + avh4d)
for cid in range(n_contrasts):
if cns.n_volumes[cid] == 0:
run.function(copy, avh3d, 'average_header' + cns.suff[cid] + '.mif')
elif cns.n_volumes[cid] == 1:
run.function(copy, avh4d, 'average_header' + cns.suff[cid] + '.mif')
else:
run.command('mrcat ' + ' '.join([avh3d] * cns.n_volumes[cid]) + ' -axis 3 average_header' + cns.suff[cid] + '.mif')
run.function(os.remove, avh3d)
run.function(os.remove, avh4d)
else:
run.function(shutil.move, 'average_header.mif', 'average_header' + cns.suff[0] + '.mif')
cns.templates = ['average_header' + csuff + '.mif' for csuff in cns.suff]
if initial_alignment == 'none':
progress = app.ProgressBar('Resampling input images to template space with no initial alignment', len(ins) * n_contrasts)
for inp in ins:
for cid in range(n_contrasts):
run.command('mrtransform ' + inp.ims_path[cid] + c_mrtransform_reorientation[cid] + ' -interp linear ' +
'-template ' + cns.templates[cid] + ' ' + inp.ims_transformed[cid] +
outofbounds_option +
datatype_option)
progress.increment()
progress.done()
if use_masks:
progress = app.ProgressBar('Reslicing input masks to average header', len(ins))
for inp in ins:
run.command('mrtransform ' + inp.msk_path + ' ' + inp.msk_transformed + ' ' +
'-interp nearest -template ' + cns.templates[0] + ' ' +
datatype_option)
progress.increment()
progress.done()
if nanmask_input:
inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
[inp.msk_transformed for inp in ins for cid in range(n_contrasts)])
if leave_one_out:
calculate_isfinite(ins, cns)
if not dolinear:
for inp in ins:
with open(os.path.join('linear_transforms_initial', inp.uid + '.txt'), 'w') as fout:
fout.write('1 0 0 0\n0 1 0 0\n0 0 1 0\n0 0 0 1\n')
run.function(copy, 'average_header' + cns.suff[0] + '.mif', 'average_header.mif')
else:
progress = app.ProgressBar('Performing initial rigid registration to template', len(ins))
mask_option = ''
cid = 0
lmax_option = ' -rigid_lmax 0 ' if cns.fod_reorientation[cid] else ' -noreorientation '
contrast_weight_option = cns.initial_alignment_weight_option
for inp in ins:
output_option = ' -rigid ' + os.path.join('linear_transforms_initial', inp.uid + '.txt')
images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
if use_masks:
mask_option = ' -mask1 ' + inp.msk_path
if initial_alignment == 'robust_mass':
if not os.path.isfile('robust/template.mif'):
if cns.n_volumes[cid] > 0:
run.command('mrconvert ' + cns.templates[cid] + ' -coord 3 0 - | mrconvert - -axes 0,1,2 robust/template.mif')
else:
run.command('mrconvert ' + cns.templates[cid] + ' robust/template.mif')
if n_contrasts > 1:
cmd = ['mrcalc', inp.ims_path[cid], cns.mc_weight_initial_alignment[cid], '-mult']
for cid in range(1, n_contrasts):
cmd += [inp.ims_path[cid], cns.mc_weight_initial_alignment[cid], '-mult', '-add']
contrast_weight_option = ''
run.command(' '.join(cmd) +
' - | mrfilter - zclean -zlower 3 -zupper 3 robust/image_' + inp.uid + '.mif'
' -maskin ' + inp.msk_path + ' -maskout robust/mask_' + inp.uid + '.mif')
else:
run.command('mrfilter ' + inp.ims_path[0] + ' zclean -zlower 3 -zupper 3 robust/image_' + inp.uid + '.mif' +
' -maskin ' + inp.msk_path + ' -maskout robust/mask_' + inp.uid + '.mif')
images = 'robust/image_' + inp.uid + '.mif robust/template.mif'
mask_option = ' -mask1 ' + 'robust/mask_' + inp.uid + '.mif'
lmax_option = ''
run.command('mrregister ' + images +
mask_option +
' -rigid_scale 1 ' +
' -rigid_niter 0 ' +
' -type rigid ' +
lmax_option +
contrast_weight_option +
' -rigid_init_translation ' + initial_alignment.replace('robust_', '') + ' ' +
datatype_option +
output_option)
# translate input images to centre of mass without interpolation
for cid in range(n_contrasts):
run.command('mrtransform ' + inp.ims_path[cid] + c_mrtransform_reorientation[cid] +
' -linear ' + os.path.join('linear_transforms_initial', inp.uid + '.txt') +
' ' + inp.ims_transformed[cid] + "_translated.mif" + datatype_option)
if use_masks:
run.command('mrtransform ' + inp.msk_path +
' -linear ' + os.path.join('linear_transforms_initial', inp.uid + '.txt') +
' ' + inp.msk_transformed + "_translated.mif" +
datatype_option)
progress.increment()
# update average space of first contrast to new extent, delete other average space images
run.command('mraverageheader ' + ' '.join([inp.ims_transformed[cid] + '_translated.mif' for inp in ins]) + ' average_header_tight.mif')
progress.done()
if voxel_size is None:
run.command('mrgrid average_header_tight.mif pad -uniform 10 average_header.mif', force=True)
else:
run.command('mrgrid average_header_tight.mif pad -uniform 10 - | '
'mrgrid - regrid -voxel ' + ','.join(map(str, voxel_size)) + ' average_header.mif', force=True)
run.function(os.remove, 'average_header_tight.mif')
for cid in range(1, n_contrasts):
run.function(os.remove, 'average_header' + cns.suff[cid] + '.mif')
if use_masks:
# reslice masks
progress = app.ProgressBar('Reslicing input masks to average header', len(ins))
for inp in ins:
run.command('mrtransform ' + inp.msk_transformed + '_translated.mif' + ' ' + inp.msk_transformed + ' ' +
'-interp nearest -template average_header.mif' + datatype_option)
progress.increment()
progress.done()
# crop average space to extent defined by translated masks
run.command(['mrmath', [inp.msk_transformed for inp in ins], 'max', 'mask_translated.mif'])
run.command('mrgrid average_header.mif crop -mask mask_translated.mif average_header_cropped.mif')
# pad average space to allow for deviation from initial alignment
run.command('mrgrid average_header_cropped.mif pad -uniform 10 average_header.mif', force=True)
run.function(os.remove, 'average_header_cropped.mif')
# reslice masks
progress = app.ProgressBar('Reslicing masks to new padded average header', len(ins))
for inp in ins:
run.command('mrtransform ' + inp.msk_transformed + '_translated.mif ' + inp.msk_transformed + ' ' +
'-interp nearest -template average_header.mif' + datatype_option, force=True)
run.function(os.remove, inp.msk_transformed + '_translated.mif')
progress.increment()
progress.done()
run.function(os.remove, 'mask_translated.mif')
# reslice images
progress = app.ProgressBar('Reslicing input images to average header', len(ins) * n_contrasts)
for cid in range(n_contrasts):
for inp in ins:
run.command('mrtransform ' + c_mrtransform_reorientation[cid] + inp.ims_transformed[cid] + '_translated.mif ' +
inp.ims_transformed[cid] + ' ' +
' -interp linear -template average_header.mif' +
outofbounds_option +
datatype_option)
run.function(os.remove, inp.ims_transformed[cid] + '_translated.mif')
progress.increment()
progress.done()
if nanmask_input:
inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
[inp.msk_transformed for inp in ins for cid in range(n_contrasts)])
if leave_one_out:
calculate_isfinite(ins, cns)
cns.templates = ['initial_template' + contrast + '.mif' for contrast in cns.suff]
for cid in range(n_contrasts):
aggregate(ins, 'initial_template' + cns.suff[cid] + '.mif', cid, agg_measure)
if cns.n_volumes[cid] == 1:
run.function(shutil.move, 'initial_template' + cns.suff[cid] + '.mif', 'tmp.mif')
run.command('mrconvert tmp.mif initial_template' + cns.suff[cid] + '.mif -axes 0,1,2,-1')
# Optimise template with linear registration
if not dolinear:
for inp in ins:
run.function(copy, os.path.join('linear_transforms_initial', inp.uid+'.txt'),
os.path.join('linear_transforms', inp.uid+'.txt'))
else:
level = 0
regtype = linear_type[0]
def linear_msg():
return 'Optimising template with linear registration (stage {0} of {1}; {2})'.format(level + 1, len(linear_scales), regtype)
progress = app.ProgressBar(linear_msg, len(linear_scales) * len(ins) * (1 + n_contrasts + int(use_masks)))
for level, (regtype, scale, niter, lmax) in enumerate(zip(linear_type, linear_scales, linear_niter, linear_lmax)):
for inp in ins:
initialise_option = ''
if use_masks:
mask_option = ' -mask1 ' + inp.msk_path
else:
mask_option = ''
lmax_option = ' -noreorientation'
metric_option = ''
mrregister_log_option = ''
if regtype == 'rigid':
scale_option = ' -rigid_scale ' + str(scale)
niter_option = ' -rigid_niter ' + str(niter)
regtype_option = ' -type rigid'
output_option = ' -rigid ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')
contrast_weight_option = cns.rigid_weight_option
if level > 0:
initialise_option = ' -rigid_init_matrix ' + os.path.join('linear_transforms_%02i' % (level - 1), inp.uid + '.txt')
if do_fod_registration:
lmax_option = ' -rigid_lmax ' + str(lmax)
if linear_estimator:
metric_option = ' -rigid_metric.diff.estimator ' + linear_estimator
if app.VERBOSITY >= 2:
mrregister_log_option = ' -info -rigid_log ' + os.path.join('log', inp.uid + contrast[cid] + "_" + str(level) + '.log')
else:
scale_option = ' -affine_scale ' + str(scale)
niter_option = ' -affine_niter ' + str(niter)
regtype_option = ' -type affine'
output_option = ' -affine ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')
contrast_weight_option = cns.affine_weight_option
if level > 0:
initialise_option = ' -affine_init_matrix ' + os.path.join('linear_transforms_%02i' % (level - 1), inp.uid + '.txt')
if do_fod_registration:
lmax_option = ' -affine_lmax ' + str(lmax)
if linear_estimator:
metric_option = ' -affine_metric.diff.estimator ' + linear_estimator
if write_log:
mrregister_log_option = ' -info -affine_log ' + os.path.join('log', inp.uid + contrast[cid] + "_" + str(level) + '.log')
if leave_one_out:
tmpl = []
for cid in range(n_contrasts):
isfinite = 'isfinite%s/%s.mif' % (cns.suff[cid], inp.uid)
weight = inp.aggregation_weight if inp.aggregation_weight is not None else '1'
# loo = (template * weighted sum - weight * this) / (weighted sum - weight)
run.command('mrcalc ' + cns.isfinite_count[cid] + ' ' + isfinite + ' -sub - | mrcalc ' + cns.templates[cid] +
' ' + cns.isfinite_count[cid] + ' -mult ' + inp.ims_transformed[cid] + ' ' + weight + ' -mult ' +
' -sub - -div loo_%s' % cns.templates[cid], force=True)
tmpl.append('loo_%s' % cns.templates[cid])
images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, tmpl)])
else:
images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
command = 'mrregister ' + images + \
initialise_option + \
mask_option + \
scale_option + \
niter_option + \
lmax_option + \
regtype_option + \
metric_option + \
datatype_option + \
contrast_weight_option + \
output_option + \
mrregister_log_option
run.command(command, force=True)
check_linear_transformation(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt'), command,
pause_on_warn=do_pause_on_warn)
if leave_one_out:
for im_temp in tmpl:
run.function(os.remove, im_temp)
progress.increment()
# Here we ensure the template doesn't drift or scale
# TODO matrix avarage might produce a large FOV for large rotations # pylint: disable=fixme
run.command('transformcalc ' + ' '.join(path.all_in_dir('linear_transforms_%02i' % level)) +
' average linear_transform_average.txt -quiet', force=True)
if linear_type[level] == 'rigid':
run.command('transformcalc linear_transform_average.txt rigid linear_transform_average.txt -quiet', force=True)
run.command('transformcalc linear_transform_average.txt invert linear_transform_average_inv.txt -quiet', force=True)
average_inv = matrix.load_transform('linear_transform_average_inv.txt')
if average_inv is not None:
for inp in ins:
transform = matrix.dot(matrix.load_transform(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')), average_inv)
matrix.save_transform(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt'), transform, force=True)
for cid in range(n_contrasts):
for inp in ins:
run.command('mrtransform ' + c_mrtransform_reorientation[cid] + inp.ims_path[cid] +
' -template ' + cns.templates[cid] +
' -linear ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt') +
' ' + inp.ims_transformed[cid] +
outofbounds_option +
datatype_option,
force=True)
progress.increment()
if use_masks:
for inp in ins:
run.command('mrtransform ' + inp.msk_path +
' -template ' + cns.templates[0] +
' -interp nearest' +
' -linear ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt') +
' ' + inp.msk_transformed,
force=True)
progress.increment()
if nanmask_input:
inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
[inp.msk_transformed for inp in ins for cid in range(n_contrasts)])
if leave_one_out:
calculate_isfinite(ins, cns)
for cid in range(n_contrasts):
cns.templates[cid] = 'linear_template%02i%s.mif' % (level, cns.suff[cid])
aggregate(ins, cns.templates[cid], cid, agg_measure)
if cns.n_volumes[cid] == 1:
run.function(shutil.move, cns.templates[cid], 'tmp.mif')
run.command('mrconvert tmp.mif ' + cns.templates[cid] + ' -axes 0,1,2,-1')
run.function(os.remove, 'tmp.mif')
for entry in os.listdir('linear_transforms_%02i' % level):
run.function(copy, os.path.join('linear_transforms_%02i' % level, entry), os.path.join('linear_transforms', entry))
progress.done()
# Create a template mask for nl registration by taking the intersection of all transformed input masks and dilating
if use_masks and (dononlinear or app.ARGS.template_mask):
run.command(['mrmath', path.all_in_dir('mask_transformed')] +
'min - | maskfilter - median - | maskfilter - dilate -npass 5 init_nl_template_mask.mif'.split(), force=True)
current_template_mask = 'init_nl_template_mask.mif'
if dononlinear:
path.make_dir('warps')
level = 0
def nonlinear_msg():
return 'Optimising template with non-linear registration (stage {0} of {1})'.format(level + 1, len(nl_scales))
progress = app.ProgressBar(nonlinear_msg, len(nl_scales) * len(ins))
for level, (scale, niter, lmax) in enumerate(zip(nl_scales, nl_niter, nl_lmax)):
for inp in ins:
if level > 0:
initialise_option = ' -nl_init ' + os.path.join('warps_%02i' % (level - 1), inp.uid + '.mif')
scale_option = ''
else:
scale_option = ' -nl_scale ' + str(scale)
if not doaffine: # rigid or no previous linear stage
initialise_option = ' -rigid_init_matrix ' + os.path.join('linear_transforms', inp.uid + '.txt')
else:
initialise_option = ' -affine_init_matrix ' + os.path.join('linear_transforms', inp.uid + '.txt')
if use_masks:
mask_option = ' -mask1 ' + inp.msk_path + ' -mask2 ' + current_template_mask
else:
mask_option = ''
if do_fod_registration:
lmax_option = ' -nl_lmax ' + str(lmax)
else:
lmax_option = ' -noreorientation'
contrast_weight_option = cns.nl_weight_option
if leave_one_out:
tmpl = []
for cid in range(n_contrasts):
isfinite = 'isfinite%s/%s.mif' % (cns.suff[cid], inp.uid)
weight = inp.aggregation_weight if inp.aggregation_weight is not None else '1'
# loo = (template * weighted sum - weight * this) / (weighted sum - weight)
run.command('mrcalc ' + cns.isfinite_count[cid] + ' ' + isfinite + ' -sub - | mrcalc ' + cns.templates[cid] +
' ' + cns.isfinite_count[cid] + ' -mult ' + inp.ims_transformed[cid] + ' ' + weight + ' -mult ' +
' -sub - -div loo_%s' % cns.templates[cid], force=True)
tmpl.append('loo_%s' % cns.templates[cid])
images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, tmpl)])
else:
images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
run.command('mrregister ' + images +
' -type nonlinear' +
' -nl_niter ' + str(nl_niter[level]) +
' -nl_warp_full ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
' -transformed ' +
' -transformed '.join([inp.ims_transformed[cid] for cid in range(n_contrasts)]) + ' ' +
' -nl_update_smooth ' + app.ARGS.nl_update_smooth +
' -nl_disp_smooth ' + app.ARGS.nl_disp_smooth +
' -nl_grad_step ' + app.ARGS.nl_grad_step +
initialise_option +
contrast_weight_option +
scale_option +
mask_option +
datatype_option +
outofbounds_option +
lmax_option,
force=True)
if use_masks:
run.command('mrtransform ' + inp.msk_path +
' -template ' + cns.templates[0] +
' -warp_full ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
' ' + inp.msk_transformed +
' -interp nearest ',
force=True)
if leave_one_out:
for im_temp in tmpl:
run.function(os.remove, im_temp)
if level > 0:
run.function(os.remove, os.path.join('warps_%02i' % (level - 1), inp.uid + '.mif'))
progress.increment(nonlinear_msg())
if nanmask_input:
inplace_nan_mask([_inp.ims_transformed[cid] for _inp in ins for cid in range(n_contrasts)],
[_inp.msk_transformed for _inp in ins for cid in range(n_contrasts)])
if leave_one_out:
calculate_isfinite(ins, cns)
for cid in range(n_contrasts):
cns.templates[cid] = 'nl_template%02i%s.mif' % (level, cns.suff[cid])
aggregate(ins, cns.templates[cid], cid, agg_measure)
if cns.n_volumes[cid] == 1:
run.function(shutil.move, cns.templates[cid], 'tmp.mif')
run.command('mrconvert tmp.mif ' + cns.templates[cid] + ' -axes 0,1,2,-1')
run.function(os.remove, 'tmp.mif')
if use_masks:
run.command(['mrmath', path.all_in_dir('mask_transformed')] +
'min - | maskfilter - median - | '.split() +
('maskfilter - dilate -npass 5 nl_template_mask' + str(level) + '.mif').split())
current_template_mask = 'nl_template_mask' + str(level) + '.mif'
if level < len(nl_scales) - 1:
if scale < nl_scales[level + 1]:
upsample_factor = nl_scales[level + 1] / scale
for inp in ins:
run.command('mrgrid ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
' regrid -scale %f tmp.mif' % upsample_factor, force=True)
run.function(shutil.move, 'tmp.mif', os.path.join('warps_%02i' % level, inp.uid + '.mif'))
else:
for inp in ins:
run.function(shutil.move, os.path.join('warps_%02i' % level, inp.uid + '.mif'), 'warps')
progress.done()
for cid in range(n_contrasts):
run.command('mrconvert ' + cns.templates[cid] + ' ' + cns.templates_out[cid],
mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE)
if app.ARGS.warp_dir:
warp_path = path.from_user(app.ARGS.warp_dir, False)
if os.path.exists(warp_path):
run.function(shutil.rmtree, warp_path)
os.makedirs(warp_path)
progress = app.ProgressBar('Copying non-linear warps to output directory "' + warp_path + '"', len(ins))
for inp in ins:
keyval = image.Header(os.path.join('warps', inp.uid + '.mif')).keyval()
keyval = dict((k, keyval[k]) for k in ('linear1', 'linear2'))
json_path = os.path.join('warps', inp.uid + '.json')
with open(json_path, 'w') as json_file:
json.dump(keyval, json_file)
run.command('mrconvert ' + os.path.join('warps', inp.uid + '.mif') + ' ' +
path.quote(os.path.join(warp_path, xcontrast_xsubject_pre_postfix[0] +
inp.uid + xcontrast_xsubject_pre_postfix[1] + '.mif')),
mrconvert_keyval=json_path, force=app.FORCE_OVERWRITE)
progress.increment()
progress.done()
if app.ARGS.linear_transformations_dir:
linear_transformations_path = path.from_user(app.ARGS.linear_transformations_dir, False)
if os.path.exists(linear_transformations_path):
run.function(shutil.rmtree, linear_transformations_path)
os.makedirs(linear_transformations_path)
for inp in ins:
trafo = matrix.load_transform(os.path.join('linear_transforms', inp.uid + '.txt'))
matrix.save_transform(os.path.join(linear_transformations_path,
xcontrast_xsubject_pre_postfix[0] + inp.uid
+ xcontrast_xsubject_pre_postfix[1] + '.txt'),
trafo,
force=app.FORCE_OVERWRITE)
if app.ARGS.transformed_dir:
for cid, trdir in enumerate(app.ARGS.transformed_dir):
transformed_path = path.from_user(trdir, False)
if os.path.exists(transformed_path):
run.function(shutil.rmtree, transformed_path)
os.makedirs(transformed_path)
progress = app.ProgressBar('Copying transformed images to output directory "' + transformed_path + '"', len(ins))
for inp in ins:
run.command(['mrconvert', inp.ims_transformed[cid], os.path.join(transformed_path, inp.ims_filenames[cid])],
mrconvert_keyval=inp.get_ims_path(False)[cid], force=app.FORCE_OVERWRITE)
progress.increment()
progress.done()
if app.ARGS.template_mask:
run.command('mrconvert ' + current_template_mask + ' ' + path.from_user(app.ARGS.template_mask, True),
mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE)
# Execute the script
import mrtrix3
mrtrix3.execute() #pylint: disable=no-member
|