File: population_template

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (1451 lines) | stat: -rwxr-xr-x 73,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
#!/usr/bin/python3

# Copyright (c) 2008-2025 the MRtrix3 contributors.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Covered Software is provided under this License on an "as is"
# basis, without warranty of any kind, either expressed, implied, or
# statutory, including, without limitation, warranties that the
# Covered Software is free of defects, merchantable, fit for a
# particular purpose or non-infringing.
# See the Mozilla Public License v. 2.0 for more details.
#
# For more details, see http://www.mrtrix.org/.

# Generates an unbiased group-average template via image registration of images to a midway space.

# note: deal with these warnings properly when we drop support for Python 2:
# pylint: disable=unspecified-encoding,consider-using-f-string

import json, math, os, re, shutil, sys

DEFAULT_RIGID_SCALES  = [0.3,0.4,0.6,0.8,1.0,1.0]
DEFAULT_RIGID_LMAX    = [2,2,2,4,4,4]
DEFAULT_AFFINE_SCALES = [0.3,0.4,0.6,0.8,1.0,1.0]
DEFAULT_AFFINE_LMAX   = [2,2,2,4,4,4]

DEFAULT_NL_SCALES = [0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
DEFAULT_NL_NITER  = [  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5]
DEFAULT_NL_LMAX   = [  2,  2,  2,  2,  2,  2,  2,  2,  4,  4,  4,  4,  4,  4,  4,  4]

REGISTRATION_MODES = ['rigid', 'affine', 'nonlinear', 'rigid_affine', 'rigid_nonlinear', 'affine_nonlinear', 'rigid_affine_nonlinear']

AGGREGATION_MODES = ["mean", "median"]

IMAGEEXT = 'mif nii mih mgh mgz img hdr'.split()

def usage(cmdline): #pylint: disable=unused-variable
  cmdline.set_author('David Raffelt (david.raffelt@florey.edu.au) & Max Pietsch (maximilian.pietsch@kcl.ac.uk) & Thijs Dhollander (thijs.dhollander@gmail.com)')

  cmdline.set_synopsis('Generates an unbiased group-average template from a series of images')
  cmdline.add_description('First a template is optimised with linear registration (rigid and/or affine, both by default), then non-linear registration is used to optimise the template further.')
  cmdline.add_argument("input_dir", nargs='+', help='Input directory containing all images used to build the template')
  cmdline.add_argument("template", help='Corresponding output template image. For multi-contrast registration, provide multiple paired input_dir and template arguments. Example: WM_dir WM_template.mif GM_dir GM_template.mif')

  options = cmdline.add_argument_group('Multi-contrast options')
  options.add_argument('-mc_weight_initial_alignment', help='Weight contribution of each contrast to the initial alignment. Comma separated, default: 1.0')
  options.add_argument('-mc_weight_rigid', help='Weight contribution of each contrast to the objective of rigid registration. Comma separated, default: 1.0')
  options.add_argument('-mc_weight_affine', help='Weight contribution of each contrast to the objective of affine registration. Comma separated, default: 1.0')
  options.add_argument('-mc_weight_nl', help='Weight contribution of each contrast to the objective of nonlinear registration. Comma separated, default: 1.0')

  linoptions = cmdline.add_argument_group('Options for the linear registration')
  linoptions.add_argument('-linear_no_pause', action='store_true', help='Do not pause the script if a linear registration seems implausible')
  linoptions.add_argument('-linear_estimator', help='Specify estimator for intensity difference metric. Valid choices are: l1 (least absolute: |x|), l2 (ordinary least squares), lp (least powers: |x|^1.2), Default: None (no robust estimator used)')
  linoptions.add_argument('-rigid_scale', help='Specify the multi-resolution pyramid used to build the rigid template, in the form of a list of scale factors (default: %s). This and affine_scale implicitly  define the number of template levels' % ','.join([str(x) for x in DEFAULT_RIGID_SCALES]))
  linoptions.add_argument('-rigid_lmax', help='Specify the lmax used for rigid registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the linear_scale factor list' % ','.join([str(x) for x in DEFAULT_RIGID_LMAX]))
  linoptions.add_argument('-rigid_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default:50 for each scale). This must be a single number or a list of same length as the linear_scale factor list')
  linoptions.add_argument('-affine_scale', help='Specify the multi-resolution pyramid used to build the affine template, in the form of a list of scale factors (default: %s). This and rigid_scale implicitly define the number of template levels' % ','.join([str(x) for x in DEFAULT_AFFINE_SCALES]))
  linoptions.add_argument('-affine_lmax', help='Specify the lmax used for affine registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the linear_scale factor list' % ','.join([str(x) for x in DEFAULT_AFFINE_LMAX]))
  linoptions.add_argument('-affine_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default:500 for each scale). This must be a single number or a list of same length as the linear_scale factor list')

  nloptions = cmdline.add_argument_group('Options for the non-linear registration')
  nloptions.add_argument('-nl_scale', help='Specify the multi-resolution pyramid used to build the non-linear template, in the form of a list of scale factors (default: %s). This implicitly defines the number of template levels' % ','.join([str(x) for x in DEFAULT_NL_SCALES]))
  nloptions.add_argument('-nl_lmax', help='Specify the lmax used for non-linear registration for each scale factor, in the form of a list of integers (default: %s). The list must be the same length as the nl_scale factor list' % ','.join([str(x) for x in DEFAULT_NL_LMAX]))
  nloptions.add_argument('-nl_niter', help='Specify the number of registration iterations used within each level before updating the template, in the form of a list of integers (default: %s). The list must be the same length as the nl_scale factor list' % ','.join([str(x) for x in DEFAULT_NL_NITER]))
  nloptions.add_argument('-nl_update_smooth', default='2.0', help='Regularise the gradient update field with Gaussian smoothing (standard deviation in voxel units, Default 2.0 x voxel_size)')
  nloptions.add_argument('-nl_disp_smooth', default='1.0', help='Regularise the displacement field with Gaussian smoothing (standard deviation in voxel units, Default 1.0 x voxel_size)')
  nloptions.add_argument('-nl_grad_step', default='0.5', help='The gradient step size for non-linear registration (Default: 0.5)')

  options = cmdline.add_argument_group('Input, output and general options')
  options.add_argument('-type', help='Specify the types of registration stages to perform. Options are "rigid" (perform rigid registration only which might be useful for intra-subject registration in longitudinal analysis), "affine" (perform affine registration) and "nonlinear" as well as cominations of registration types: %s. Default: rigid_affine_nonlinear' % ', '.join('"' + x + '"' for x in REGISTRATION_MODES if "_" in x), default='rigid_affine_nonlinear')
  options.add_argument('-voxel_size', help='Define the template voxel size in mm. Use either a single value for isotropic voxels or 3 comma separated values.')
  options.add_argument('-initial_alignment', default='mass', help='Method of alignment to form the initial template. Options are "mass" (default), "robust_mass" (requires masks), "geometric" and "none".')
  options.add_argument('-mask_dir', help='Optionally input a set of masks inside a single directory, one per input image (with the same file name prefix). Using masks will speed up registration significantly. Note that masks are used for registration, not for aggregation. To exclude areas from aggregation, NaN-mask your input images.')
  options.add_argument('-warp_dir', help='Output a directory containing warps from each input to the template. If the folder does not exist it will be created')
  options.add_argument('-transformed_dir', help='Output a directory containing the input images transformed to the template. If the folder does not exist it will be created. For multi-contrast registration, provide comma separated list of directories.')
  options.add_argument('-linear_transformations_dir', help='Output a directory containing the linear transformations used to generate the template. If the folder does not exist it will be created')
  options.add_argument('-template_mask', help='Output a template mask. Only works if -mask_dir has been input. The template mask is computed as the intersection of all subject masks in template space.')
  options.add_argument('-noreorientation', action='store_true', help='Turn off FOD reorientation in mrregister. Reorientation is on by default if the number of volumes in the 4th dimension corresponds to the number of coefficients in an antipodally symmetric spherical harmonic series (i.e. 6, 15, 28, 45, 66 etc)')
  options.add_argument('-leave_one_out', help='Register each input image to a template that does not contain that image. Valid choices: 0, 1, auto. (Default: auto (true if n_subjects larger than 2 and smaller than 15)) ')
  options.add_argument('-aggregate', help='Measure used to aggregate information from transformed images to the template image. Valid choices: %s. Default: mean' % ', '.join(AGGREGATION_MODES))
  options.add_argument('-aggregation_weights', help='Comma separated file containing weights used for weighted image aggregation. Each row must contain the identifiers of the input image and its weight. Note that this weighs intensity values not transformations (shape).')
  options.add_argument('-nanmask', action='store_true', help='Optionally apply masks to (transformed) input images using NaN values to specify include areas for registration and aggregation. Only works if -mask_dir has been input.')
  options.add_argument('-copy_input', action='store_true', help='Copy input images and masks into local scratch directory.')

# ENH: add option to initialise warps / transformations

# Binds raw_input() to input() in Python2, so that input() can be used
#   and the code will work on both Python 2 and 3
try:
  input = raw_input #pylint: disable=redefined-builtin, invalid-name
except NameError:
  pass


def abspath(arg, *args):
  return os.path.abspath(os.path.join(arg, *args))


def relpath(arg, *args):
  from mrtrix3 import app #pylint: disable=no-name-in-module, import-outside-toplevel
  return os.path.relpath(os.path.join(arg, *args), app.WORKING_DIR)


def copy(src, dst, follow_symlinks=True):
  """Copy data but do not set mode bits. Return the file's destination.

  mimics shutil.copy but without setting mode bits as shutil.copymode can fail on exotic mounts
  (observed on cifs with file_mode=0777).
  """
  if os.path.isdir(dst):
    dst = os.path.join(dst, os.path.basename(src))
  if sys.version_info[0] > 2:
    shutil.copyfile(src, dst, follow_symlinks=follow_symlinks)   # pylint: disable=unexpected-keyword-arg
  else:
    shutil.copyfile(src, dst)
  return dst


def check_linear_transformation(transformation, cmd, max_scaling=0.5, max_shear=0.2, max_rot=None, pause_on_warn=True): #pylint: disable=too-many-positional-arguments
  from mrtrix3 import app, run, utils #pylint: disable=no-name-in-module, import-outside-toplevel
  if max_rot is None:
    max_rot = 2 * math.pi

  good = True
  run.command('transformcalc ' + transformation + ' decompose ' + transformation + 'decomp')
  if not os.path.isfile(transformation + 'decomp'):  # does not exist if run with -continue option
    app.console(transformation + 'decomp not found. skipping check')
    return True
  data = utils.load_keyval(transformation + 'decomp')
  run.function(os.remove, transformation + 'decomp')
  scaling = [float(value) for value in data['scaling']]
  if any(a < 0 for a in scaling) or any(a > (1 + max_scaling) for a in scaling) or any(
      a < (1 - max_scaling) for a in scaling):
    app.warn("large scaling (" + str(scaling) + ") in " + transformation)
    good = False
  shear = [float(value) for value in data['shear']]
  if any(abs(a) > max_shear for a in shear):
    app.warn("large shear (" + str(shear) + ") in " + transformation)
    good = False
  rot_angle = float(data['angle_axis'][0])
  if abs(rot_angle) > max_rot:
    app.warn("large rotation (" + str(rot_angle) + ") in " + transformation)
    good = False

  if not good:
    newcmd = []
    what = ''
    init_rotation_found = False
    skip = 0
    for element in cmd.split():
      if skip:
        skip -= 1
        continue
      if '_init_rotation' in element:
        init_rotation_found = True
      if '_init_matrix' in element:
        skip = 1
        continue
      if 'affine_scale' in element:
        assert what != 'rigid'
        what = 'affine'
      elif 'rigid_scale' in element:
        assert what != 'affine'
        what = 'rigid'
      newcmd.append(element)
    newcmd = " ".join(newcmd)
    if not init_rotation_found:
      app.console("replacing the transformation obtained with:")
      app.console(cmd)
      if what:
        newcmd += ' -' + what + '_init_translation mass -' + what + '_init_rotation search'
      app.console("by the one obtained with:")
      app.console(newcmd)
      run.command(newcmd, force=True)
      return check_linear_transformation(transformation, newcmd, max_scaling, max_shear, max_rot, pause_on_warn=pause_on_warn)
    if pause_on_warn:
      app.warn("you might want to manually repeat mrregister with different parameters and overwrite the transformation file: \n%s" % transformation)
      app.console('The command that failed the test was: \n' + cmd)
      app.console('Working directory: \n' + os.getcwd())
      input("press enter to continue population_template")
  return good


def aggregate(inputs, output, contrast_idx, mode, force=True):
  from mrtrix3 import MRtrixError, run  # pylint: disable=no-name-in-module, import-outside-toplevel

  images = [inp.ims_transformed[contrast_idx] for inp in inputs]
  if mode == 'mean':
    run.command(['mrmath', images, 'mean', '-keep_unary_axes', output], force=force)
  elif mode == 'median':
    run.command(['mrmath', images, 'median', '-keep_unary_axes', output], force=force)
  elif mode == 'weighted_mean':
    weights = [inp.aggregation_weight for inp in inputs]
    assert not any(w is None for w in weights), weights
    wsum = sum(map(float, weights))
    if wsum <= 0:
      raise MRtrixError("the sum of aggregetion weights has to be positive")
    cmd = ['mrcalc']
    for weight, image in zip(weights, images):
      if float(weight) != 0:
        cmd += [image, weight, '-mult'] + (['-add'] if len(cmd) > 1 else [])
    cmd += ['%.16f' % wsum, '-div', output]
    run.command(cmd, force=force)
  else:
    raise MRtrixError("aggregation mode %s not understood" % mode)


def inplace_nan_mask(images, masks):
  from mrtrix3 import run  # pylint: disable=no-name-in-module, import-outside-toplevel
  assert len(images) == len(masks), (len(images), len(masks))
  for image, mask in zip(images, masks):
    target_dir = os.path.split(image)[0]
    masked = os.path.join(target_dir, '__' + os.path.split(image)[1])
    run.command("mrcalc " + mask + " " + image + " nan -if " + masked, force=True)
    run.function(shutil.move, masked, image)


def calculate_isfinite(inputs, contrasts):
  from mrtrix3 import run, path  # pylint: disable=no-name-in-module, import-outside-toplevel
  agg_weights = [float(inp.aggregation_weight) for inp in inputs if inp.aggregation_weight is not None]
  for cid in range(contrasts.n_contrasts):
    for inp in inputs:
      if contrasts.n_volumes[cid] > 0:
        cmd = 'mrconvert ' + inp.ims_transformed[cid] + ' -coord 3 0 - | mrcalc - -finite'
      else:
        cmd = 'mrcalc ' + inp.ims_transformed[cid] + ' -finite'
      if inp.aggregation_weight:
        cmd += ' %s -mult ' % inp.aggregation_weight
      cmd += ' isfinite%s/%s.mif' % (contrasts.suff[cid], inp.uid)
      run.command(cmd, force=True)
  for cid in range(contrasts.n_contrasts):
    cmd = ['mrmath', path.all_in_dir('isfinite%s' % contrasts.suff[cid]), 'sum']
    if agg_weights:
      agg_weight_norm = str(float(len(agg_weights)) / sum(agg_weights))
      cmd += ['-', '|', 'mrcalc', '-', agg_weight_norm, '-mult']
    run.command(cmd + [contrasts.isfinite_count[cid]], force=True)


def get_common_postfix(file_list):
  return os.path.commonprefix([i[::-1] for i in file_list])[::-1]


def get_common_prefix(file_list):
  return os.path.commonprefix(file_list)


class Contrasts(object):
  """
      Class that parses arguments and holds information specific to each image contrast

      Attributes
      ----------
      suff: list of str
        identifiers used for contrast-specific filenames and folders ['_c0', '_c1', ...]

      names: list of str
        derived from constrast-specific input folder

      templates_out: list of str
        full path to output templates

      templates: list of str
        holds current template names during registration

      n_volumes: list of int
        number of volumes in each contrast

      fod_reorientation: list of bool
        whether to perform FOD reorientation with mrtransform

      isfinite_count: list of str
        filenames of images holding (weighted) number of finite-valued voxels across all images

      mc_weight_<mode>: list of str
        contrast-specific weight used during initialisation / registration

      <mode>_weight_option: list of str
        weight option to be passed to mrregister, <mode> = {'initial_alignment', 'rigid', 'affine', 'nl'}

      n_contrasts: int

      """

  def __init__(self):
    from mrtrix3 import MRtrixError, path, app  # pylint: disable=no-name-in-module, import-outside-toplevel

    n_contrasts = len(app.ARGS.input_dir)

    self.suff = ["_c" + c for c in map(str, range(n_contrasts))]
    self.names = [os.path.relpath(f, os.path.commonprefix(app.ARGS.input_dir)) for f in app.ARGS.input_dir]

    self.templates_out = [path.from_user(t, True) for t in app.ARGS.template]

    self.mc_weight_initial_alignment = [None for _ in range(self.n_contrasts)]
    self.mc_weight_rigid = [None for _ in range(self.n_contrasts)]
    self.mc_weight_affine = [None for _ in range(self.n_contrasts)]
    self.mc_weight_nl = [None for _ in range(self.n_contrasts)]
    self.initial_alignment_weight_option = [None for _ in range(self.n_contrasts)]
    self.rigid_weight_option = [None for _ in range(self.n_contrasts)]
    self.affine_weight_option = [None for _ in range(self.n_contrasts)]
    self.nl_weight_option = [None for _ in range(self.n_contrasts)]

    self.isfinite_count = ['isfinite' + c + '.mif' for c in self.suff]
    self.templates = [None for _ in range(self.n_contrasts)]
    self.n_volumes = [None for _ in range(self.n_contrasts)]
    self.fod_reorientation = [None for _ in range(self.n_contrasts)]


    for mode in ['initial_alignment', 'rigid', 'affine', 'nl']:
      opt = app.ARGS.__dict__.get('mc_weight_' + mode, None)
      if opt:
        if n_contrasts == 1:
          raise MRtrixError('mc_weight_' + mode+' requires multiple input contrasts')
        opt = opt.split(',')
        if len(opt) != n_contrasts:
          raise MRtrixError('mc_weight_' + mode+' needs to be defined for each contrast')
      else:
        opt = ["1"] * n_contrasts
      self.__dict__['mc_weight_%s' % mode] = opt
      self.__dict__['%s_weight_option' % mode] = ' -mc_weights '+','.join(opt)+' ' if n_contrasts > 1 else ''

    if len(self.templates_out) != n_contrasts:
      raise MRtrixError('number of templates (%i) does not match number of input directories (%i)' %
                        (len(self.templates_out), n_contrasts))

  @property
  def n_contrasts(self):
    return len(self.suff)

  def __repr__(self, *args, **kwargs):
    text = ''
    for cid in range(self.n_contrasts):
      text += '\tcontrast: %s, template: %s, suffix: %s\n' % (self.names[cid], self.templates_out[cid], self.suff[cid])
    return text


class Input(object):
  """
      Class that holds input information specific to a single image (multiple contrasts)

      Attributes
      ----------
      uid: str
        unique identifier for these input image(s), does not contain spaces

      ims_path: list of str
        full path to input images, shell quoted OR paths to cached file if cache_local was called

      msk_path: str
        full path to input mask, shell quoted OR path to cached file if cache_local was called

      ims_filenames : list of str
        for each contrast the input file paths stripped of their respective directories. Used for final output only.

      msk_filename: str
        as ims_filenames

      ims_transformed: list of str
        input_transformed<contrast identifier>/<uid>.mif

      msk_transformed: list of str
        mask_transformed/<uid>.mif

      aggregation_weight: float
        weights used in image aggregation that forms the template. Has to be normalised across inputs.

      _im_directories : list of str
        full path to user-provided input directories containing the input images, one for each contrast

      _msk_directory: str
        full path to user-provided mask directory

      _local_ims: list of str
        path to cached input images

      _local_msk: str
        path to cached input mask

      Methods
      -------
      cache_local()
        copy files into folders in current working directory. modifies _local_ims and  _local_msk

      """
  def __init__(self, uid, filenames, directories, contrasts, mask_filename='', mask_directory=''): #pylint: disable=too-many-positional-arguments
    self.contrasts = contrasts

    self.uid = uid
    assert self.uid, "UID empty"
    assert self.uid.count(' ') == 0, 'UID "%s" contains whitespace' % self.uid

    assert len(directories) == len(filenames)
    self.ims_filenames = filenames
    self._im_directories = directories

    self.msk_filename = mask_filename
    self._msk_directory = mask_directory

    n_contrasts = len(contrasts)

    self.ims_transformed = [os.path.join('input_transformed'+contrasts[cid], uid + '.mif') for cid in range(n_contrasts)]
    self.msk_transformed = os.path.join('mask_transformed', uid + '.mif')

    self.aggregation_weight = None

    self._local_ims = []
    self._local_msk = None

  def __repr__(self, *args, **kwargs):
    text = '\nInput ['
    for key in sorted([k for k in self.__dict__ if not k.startswith('_')]):
      text += '\n\t' + str(key) + ': ' + str(self.__dict__[key])
    text += '\n]'
    return text

  def info(self):
    message = ['input: ' + self.uid]
    if self.aggregation_weight:
      message += ['agg weight: ' + self.aggregation_weight]
    for csuff, fname in zip(self.contrasts, self.ims_filenames):
      message += [((csuff + ': ') if csuff else '') + '"' + fname + '"']
    if self.msk_filename:
      message += ['mask: ' + self.msk_filename]
    return ', '.join(message)

  def cache_local(self):
    from mrtrix3 import run, path  # pylint: disable=no-name-in-module, import-outside-toplevel
    contrasts = self.contrasts
    for cid, csuff in enumerate(contrasts):
      if not os.path.isdir('input' + csuff):
        path.make_dir('input' + csuff)
      run.command('mrconvert ' + self.ims_path[cid] + ' ' + os.path.join('input' + csuff, self.uid + '.mif'))
    self._local_ims = [os.path.join('input' + csuff, self.uid + '.mif') for csuff in contrasts]
    if self.msk_filename:
      if not os.path.isdir('mask'):
        path.make_dir('mask')
      run.command('mrconvert ' + self.msk_path + ' ' + os.path.join('mask', self.uid + '.mif'))
      self._local_msk = os.path.join('mask', self.uid + '.mif')

  def get_ims_path(self, quoted=True):
    """ return path to input images """
    from mrtrix3 import path  # pylint: disable=no-name-in-module, import-outside-toplevel
    if self._local_ims:
      return self._local_ims
    return [path.from_user(abspath(d, f), quoted) for d, f in zip(self._im_directories, self.ims_filenames)]
  ims_path = property(get_ims_path)

  def get_msk_path(self, quoted=True):
    """ return path to input mask """
    from mrtrix3 import path  # pylint: disable=no-name-in-module, import-outside-toplevel
    if self._local_msk:
      return self._local_msk
    return path.from_user(os.path.join(self._msk_directory, self.msk_filename), quoted) if self.msk_filename else None
  msk_path = property(get_msk_path)


def parse_input_files(in_files, mask_files, contrasts, f_agg_weight=None, whitespace_repl='_'):
  """
    matches input images across contrasts and pair them with masks.
    extracts unique identifiers from mask and image filenames by stripping common pre and postfix (per contrast and for masks)
    unique identifiers contain ASCII letters, numbers and '_' but no whitespace which is replaced by whitespace_repl

    in_files: list of lists
      the inner list holds filenames specific to a contrast

    mask_files:
      can be empty

    returns list of Input

    checks: 3d_nonunity
    TODO check if no common grid & trafo across contrasts (only relevant for robust init?)

  """
  from mrtrix3 import MRtrixError, app, path, image  # pylint: disable=no-name-in-module, import-outside-toplevel
  contrasts = contrasts.suff
  inputs = []
  def paths_to_file_uids(paths, prefix, postfix):
    """ strip pre and postfix from filename, replace whitespace characters """
    uid_path = {}
    uids = []
    for path in paths:
      uid = re.sub(re.escape(postfix)+'$', '', re.sub('^'+re.escape(prefix), '', os.path.split(path)[1]))
      uid = re.sub(r'\s+', whitespace_repl, uid)
      if not uid:
        raise MRtrixError('No uniquely identifiable part of filename "' + path + '" '
                          'after prefix and postfix substitution '
                          'with prefix "' + prefix + '" and postfix "' + postfix + '"')
      app.debug('UID mapping: "' + path + '" --> "' + uid + '"')
      if uid in uid_path:
        raise MRtrixError('unique file identifier is not unique: "' + uid + '" mapped to "' + path + '" and "' + uid_path[uid] +'"')
      uid_path[uid] = path
      uids.append(uid)
    return uids

  # mask uids
  mask_uids = []
  if mask_files:
    mask_common_postfix = get_common_postfix(mask_files)
    if not mask_common_postfix:
      raise MRtrixError('mask filenames do not have a common postfix')
    mask_common_prefix = get_common_prefix([os.path.split(m)[1] for m in mask_files])
    mask_uids = paths_to_file_uids(mask_files, mask_common_prefix, mask_common_postfix)
    if app.VERBOSITY > 1:
      app.console('mask uids:' + str(mask_uids))

  # images uids
  common_postfix = [get_common_postfix(files) for files in in_files]
  common_prefix = [get_common_prefix(files) for files in in_files]
  # xcontrast_xsubject_pre_postfix: prefix and postfix of the common part across contrasts and subjects,
  # without image extensions and leading or trailing '_' or '-'
  xcontrast_xsubject_pre_postfix = [get_common_postfix(common_prefix).lstrip('_-'),
                                    get_common_prefix([re.sub('.('+'|'.join(IMAGEEXT)+')(.gz)?$', '', pfix).rstrip('_-') for pfix in common_postfix])]
  if app.VERBOSITY > 1:
    app.console("common_postfix: " + str(common_postfix))
    app.console("common_prefix: " + str(common_prefix))
    app.console("xcontrast_xsubject_pre_postfix: " + str(xcontrast_xsubject_pre_postfix))
  for ipostfix, postfix in enumerate(common_postfix):
    if not postfix:
      raise MRtrixError('image filenames do not have a common postfix:\n' + '\n'.join(in_files[ipostfix]))

  c_uids = []
  for cid, files in enumerate(in_files):
    c_uids.append(paths_to_file_uids(files, common_prefix[cid], common_postfix[cid]))

  if app.VERBOSITY > 1:
    app.console('uids by contrast:' + str(c_uids))

  # join images and masks
  for ifile, fname in enumerate(in_files[0]):
    uid = c_uids[0][ifile]
    fnames = [fname]
    dirs = [abspath(path.from_user(app.ARGS.input_dir[0], False))]
    if len(contrasts) > 1:
      for cid in range(1, len(contrasts)):
        dirs.append(abspath(path.from_user(app.ARGS.input_dir[cid], False)))
        image.check_3d_nonunity(os.path.join(dirs[cid], in_files[cid][ifile]))
        if uid != c_uids[cid][ifile]:
          raise MRtrixError('no matching image was found for image %s and contrasts %s and %s.' % (fname, dirs[0], dirs[cid]))
        fnames.append(in_files[cid][ifile])

    if mask_files:
      if uid not in mask_uids:
        raise MRtrixError('no matching mask image was found for input image ' + fname + ' with uid "'+uid+'". '
                          'Mask uid candidates: ' + ', '.join(['"%s"' % m for m in mask_uids]))
      index = mask_uids.index(uid)
      # uid, filenames, directories, contrasts, mask_filename = '', mask_directory = '', agg_weight = None
      inputs.append(Input(uid, fnames, dirs, contrasts,
                          mask_filename=mask_files[index], mask_directory=abspath(path.from_user(app.ARGS.mask_dir, False))))
    else:
      inputs.append(Input(uid, fnames, dirs, contrasts))

  # parse aggregation weights and match to inputs
  if f_agg_weight:
    import csv  # pylint: disable=import-outside-toplevel
    try:
      with open(f_agg_weight, 'r') as fweights:
        agg_weights = dict((row[0].strip(), row[1].strip()) for row in csv.reader(fweights, delimiter=',', quotechar='#'))
    except UnicodeDecodeError:
      with open(f_agg_weight, 'r') as fweights:
        reader = csv.reader(fweights.read().decode('utf-8', errors='replace'), delimiter=',', quotechar='#')
        agg_weights = dict((row[0].strip(), row[1].strip()) for row in reader)
    pref = '^' + re.escape(get_common_prefix(list(agg_weights.keys())))
    suff = re.escape(get_common_postfix(list(agg_weights.keys()))) + '$'
    agg_weights = {re.sub(suff, '', re.sub(pref, '', item[0])):item[1] for item in agg_weights.items()}
    for inp in inputs:
      if inp.uid not in agg_weights:
        raise MRtrixError('aggregation weight not found for input "%s"' % inp.uid)
      inp.aggregation_weight = agg_weights[inp.uid]
    app.console('Using aggregation weights ' + f_agg_weight)
    weights = [float(inp.aggregation_weight) for inp in inputs if inp.aggregation_weight is not None]
    if sum(weights) <= 0:
      raise MRtrixError('Sum of aggregation weights is not positive: ' + str(weights))
    if any(w < 0 for w in weights):
      app.warn('Negative aggregation weights: ' + str(weights))

  return inputs, xcontrast_xsubject_pre_postfix


def execute(): #pylint: disable=unused-variable
  from mrtrix3 import MRtrixError, app, image, matrix, path, run #pylint: disable=no-name-in-module, import-outside-toplevel

  if not app.ARGS.type in REGISTRATION_MODES:
    raise MRtrixError("registration type must be one of %s. provided: %s" % (str(REGISTRATION_MODES), app.ARGS.type))
  dorigid     = "rigid"     in app.ARGS.type
  doaffine    = "affine"    in app.ARGS.type
  dolinear    = dorigid or doaffine
  dononlinear = "nonlinear" in app.ARGS.type
  assert (dorigid + doaffine + dononlinear >= 1), "FIXME: registration type not valid"


  input_output = app.ARGS.input_dir + [app.ARGS.template]
  n_contrasts = len(input_output) // 2
  if len(input_output) != 2 * n_contrasts:
    raise MRtrixError('expected two arguments per contrast, received %i: %s' % (len(input_output), ', '.join(input_output)))
  if n_contrasts > 1:
    app.console('Generating population template using multi-contrast registration')

  # reorder arguments for multi-contrast registration as after command line parsing app.ARGS.input_dir holds all but one argument
  app.ARGS.input_dir = []
  app.ARGS.template = []
  for i_contrast in range(n_contrasts):
    inargs = (input_output[i_contrast*2], input_output[i_contrast*2+1])
    if not os.path.isdir(inargs[0]):
      raise MRtrixError('input directory %s not found' % inargs[0])
    app.ARGS.input_dir.append(relpath(inargs[0]))
    app.ARGS.template.append(relpath(inargs[1]))

  cns = Contrasts()
  app.debug(str(cns))

  in_files = [sorted(path.all_in_dir(input_dir, dir_path=False)) for input_dir in app.ARGS.input_dir]
  if len(in_files[0]) <= 1:
    raise MRtrixError('Not enough images found in input directory ' + app.ARGS.input_dir[0] +
                      '. More than one image is needed to generate a population template')
  if n_contrasts > 1:
    for cid in range(1, n_contrasts):
      if len(in_files[cid]) != len(in_files[0]):
        raise MRtrixError('Found %i images in input directory %s ' % (len(app.ARGS.input_dir[0]), app.ARGS.input_dir[0]) +
                          'but %i input images in %s.' % (len(app.ARGS.input_dir[cid]), app.ARGS.input_dir[cid]))
  else:
    app.console('Generating a population-average template from ' + str(len(in_files[0])) + ' input images')
    if n_contrasts > 1:
      app.console('using ' + str(len(in_files)) + ' contrasts for each input image')

  voxel_size = None
  if app.ARGS.voxel_size:
    voxel_size = app.ARGS.voxel_size.split(',')
    if len(voxel_size) == 1:
      voxel_size = voxel_size * 3
    try:
      if len(voxel_size) != 3:
        raise ValueError
      [float(v) for v in voxel_size]  #pylint: disable=expression-not-assigned
    except ValueError:
      raise MRtrixError('voxel size needs to be a single or three comma-separated floating point numbers; received: ' + str(app.ARGS.voxel_size))

  agg_measure = 'mean'
  if app.ARGS.aggregate is not None:
    if not app.ARGS.aggregate in AGGREGATION_MODES:
      app.error("aggregation type must be one of %s. provided: %s" % (str(AGGREGATION_MODES), app.ARGS.aggregate))
    agg_measure = app.ARGS.aggregate

  agg_weights = app.ARGS.aggregation_weights
  if agg_weights is not None:
    agg_measure = "weighted_" + agg_measure
    if agg_measure != 'weighted_mean':
      app.error("aggregation weights require '-aggregate mean' option. provided: %s" % (app.ARGS.aggregate))
      if not os.path.isfile(app.ARGS.aggregation_weights):
        app.error("aggregation weights file not found: %s" % app.ARGS.aggregation_weights)

  initial_alignment = app.ARGS.initial_alignment
  if initial_alignment not in ["mass", "robust_mass", "geometric", "none"]:
    raise MRtrixError('initial_alignment must be one of ' + " ".join(["mass", "robust_mass", "geometric", "none"]) + " provided: " + str(initial_alignment))

  linear_estimator = app.ARGS.linear_estimator
  if linear_estimator and not linear_estimator.lower() == 'none':
    if not dolinear:
      raise MRtrixError('linear_estimator specified when no linear registration is requested')
    if linear_estimator not in ["l1", "l2", "lp"]:
      raise MRtrixError('linear_estimator must be one of ' + " ".join(["l1", "l2", "lp"]) + " provided: " + str(linear_estimator))

  use_masks = False
  mask_files = []
  if app.ARGS.mask_dir:
    use_masks = True
    app.ARGS.mask_dir = relpath(app.ARGS.mask_dir)
    if not os.path.isdir(app.ARGS.mask_dir):
      raise MRtrixError('mask directory not found')
    mask_files = sorted(path.all_in_dir(app.ARGS.mask_dir, dir_path=False))
    if len(mask_files) < len(in_files[0]):
      raise MRtrixError('there are not enough mask images for the number of images in the input directory')

  if not use_masks:
    app.warn('no masks input. Use input masks to reduce computation time and improve robustness')

  if app.ARGS.template_mask and not use_masks:
    raise MRtrixError('you cannot output a template mask because no subject masks were input using -mask_dir')

  nanmask_input = app.ARGS.nanmask
  if nanmask_input and not use_masks:
    raise MRtrixError('you cannot use NaN masking when no subject masks were input using -mask_dir')

  ins, xcontrast_xsubject_pre_postfix = parse_input_files(in_files, mask_files, cns, agg_weights)

  leave_one_out = 'auto'
  if app.ARGS.leave_one_out is not None:
    leave_one_out = app.ARGS.leave_one_out
    if not leave_one_out in ['0', '1', 'auto']:
      raise MRtrixError('leave_one_out not understood: ' + str(leave_one_out))
  if leave_one_out == 'auto':
    leave_one_out = 2 < len(ins) < 15
  else:
    leave_one_out = bool(int(leave_one_out))
  if leave_one_out:
    app.console('performing leave-one-out registration')
    # check that at sum of weights is positive for any grouping if weighted aggregation is used
    weights = [float(inp.aggregation_weight) for inp in ins if inp.aggregation_weight is not None]
    if weights and sum(weights) - max(weights) <= 0:
      raise MRtrixError('leave-one-out registration requires positive aggregation weights in all groupings')

  noreorientation = app.ARGS.noreorientation

  do_pause_on_warn = True
  if app.ARGS.linear_no_pause:
    do_pause_on_warn = False
    if not dolinear:
      raise MRtrixError("linear option set when no linear registration is performed")

  if len(app.ARGS.template) != n_contrasts:
    raise MRtrixError('mismatch between number of output templates (%i) ' % len(app.ARGS.template) +
                      'and number of contrasts (%i)' % n_contrasts)
  for templ in app.ARGS.template:
    app.check_output_path(templ)

  if app.ARGS.warp_dir:
    app.ARGS.warp_dir = relpath(app.ARGS.warp_dir)
    app.check_output_path(app.ARGS.warp_dir)

  if app.ARGS.transformed_dir:
    app.ARGS.transformed_dir = [relpath(d) for d in app.ARGS.transformed_dir.split(',')]
    if len(app.ARGS.transformed_dir) != n_contrasts:
      raise MRtrixError('require multiple comma separated transformed directories if multi-contrast registration is used')
    for tdir in app.ARGS.transformed_dir:
      app.check_output_path(tdir)

  if app.ARGS.linear_transformations_dir:
    if not dolinear:
      raise MRtrixError("linear option set when no linear registration is performed")
    app.ARGS.linear_transformations_dir = relpath(app.ARGS.linear_transformations_dir)
    app.check_output_path(app.ARGS.linear_transformations_dir)

  # automatically detect SH series in each contrast
  do_fod_registration = False  # in any contrast
  cns.n_volumes = []
  cns.fod_reorientation = []
  for cid in range(n_contrasts):
    header = image.Header(ins[0].get_ims_path(False)[cid])
    image_size = header.size()
    if len(image_size) < 3 or len(image_size) > 4:
      raise MRtrixError('only 3 and 4 dimensional images can be used to build a template')
    if len(image_size) == 4:
      cns.fod_reorientation.append(header.is_sh() and not noreorientation)
      cns.n_volumes.append(image_size[3])
      do_fod_registration = do_fod_registration or cns.fod_reorientation[-1]
    else:
      cns.fod_reorientation.append(False)
      cns.n_volumes.append(0)
  if do_fod_registration:
    app.console("SH Series detected, performing FOD registration in contrast: " +
                ', '.join(app.ARGS.input_dir[cid] for cid in range(n_contrasts) if cns.fod_reorientation[cid]))
  c_mrtransform_reorientation = [' -reorient_fod ' + ('yes' if cns.fod_reorientation[cid] else 'no') + ' '
                                 for cid in range(n_contrasts)]

  if nanmask_input:
    app.console("NaN masking transformed images")

  # rigid options
  if app.ARGS.rigid_scale:
    rigid_scales = [float(x) for x in app.ARGS.rigid_scale.split(',')]
    if not dorigid:
      raise MRtrixError("rigid_scales option set when no rigid registration is performed")
  else:
    rigid_scales = DEFAULT_RIGID_SCALES
  if app.ARGS.rigid_lmax:
    if not dorigid:
      raise MRtrixError("rigid_lmax option set when no rigid registration is performed")
    rigid_lmax = [int(x) for x in app.ARGS.rigid_lmax.split(',')]
    if do_fod_registration and len(rigid_scales) != len(rigid_lmax):
      raise MRtrixError('rigid_scales and rigid_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(rigid_scales), len(rigid_lmax)))
  else:
    rigid_lmax = DEFAULT_RIGID_LMAX

  rigid_niter = [100] * len(rigid_scales)
  if app.ARGS.rigid_niter:
    if not dorigid:
      raise MRtrixError("rigid_niter specified when no rigid registration is performed")
    rigid_niter = [int(x) for x in app.ARGS.rigid_niter.split(',')]
    if len(rigid_niter) == 1:
      rigid_niter = rigid_niter * len(rigid_scales)
    elif len(rigid_scales) != len(rigid_niter):
      raise MRtrixError('rigid_scales and rigid_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(rigid_scales), len(rigid_niter)))

  # affine options
  if app.ARGS.affine_scale:
    affine_scales = [float(x) for x in app.ARGS.affine_scale.split(',')]
    if not doaffine:
      raise MRtrixError("affine_scale option set when no affine registration is performed")
  else:
    affine_scales = DEFAULT_AFFINE_SCALES
  if app.ARGS.affine_lmax:
    if not doaffine:
      raise MRtrixError("affine_lmax option set when no affine registration is performed")
    affine_lmax = [int(x) for x in app.ARGS.affine_lmax.split(',')]
    if do_fod_registration and len(affine_scales) != len(affine_lmax):
      raise MRtrixError('affine_scales and affine_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(affine_scales), len(affine_lmax)))
  else:
    affine_lmax = DEFAULT_AFFINE_LMAX

  affine_niter = [500] * len(affine_scales)
  if app.ARGS.affine_niter:
    if not doaffine:
      raise MRtrixError("affine_niter specified when no affine registration is performed")
    affine_niter = [int(x) for x in app.ARGS.affine_niter.split(',')]
    if len(affine_niter) == 1:
      affine_niter = affine_niter * len(affine_scales)
    elif len(affine_scales) != len(affine_niter):
      raise MRtrixError('affine_scales and affine_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(affine_scales), len(affine_niter)))

  linear_scales = []
  linear_lmax = []
  linear_niter = []
  linear_type = []
  if dorigid:
    linear_scales += rigid_scales
    linear_lmax += rigid_lmax
    linear_niter += rigid_niter
    linear_type += ['rigid'] * len(rigid_scales)

  if doaffine:
    linear_scales += affine_scales
    linear_lmax += affine_lmax
    linear_niter += affine_niter
    linear_type += ['affine'] * len(affine_scales)

  assert len(linear_type) == len(linear_scales)
  assert len(linear_scales) == len(linear_niter)
  if do_fod_registration:
    if len(linear_lmax) != len(linear_niter):
      mismatch = []
      if len(rigid_lmax) != len(rigid_niter):
        mismatch += ['rigid: lmax stages: %s, niter stages: %s' % (len(rigid_lmax), len(rigid_niter))]
      if len(affine_lmax) != len(affine_niter):
        mismatch += ['affine: lmax stages: %s, niter stages: %s' % (len(affine_lmax), len(affine_niter))]
      raise MRtrixError('linear registration: lmax and niter schedules are not equal in length: %s' % (', '.join(mismatch)))
  app.console('-' * 60)
  app.console('initial alignment of images: %s' % initial_alignment)
  app.console('-' * 60)
  if n_contrasts > 1:
    for cid in range(n_contrasts):
      app.console('\tcontrast "%s": %s, ' % (cns.suff[cid], cns.names[cid]) +
                  'objective weight: %s' % cns.mc_weight_initial_alignment[cid])

  if dolinear:
    app.console('-' * 60)
    app.console('linear registration stages:')
    app.console('-' * 60)
    if n_contrasts > 1:
      for cid in range(n_contrasts):
        msg = '\tcontrast "%s": %s' % (cns.suff[cid], cns.names[cid])
        if 'rigid' in linear_type:
          msg += ', objective weight rigid: %s' % cns.mc_weight_rigid[cid]
        if 'affine' in linear_type:
          msg += ', objective weight affine: %s' % cns.mc_weight_affine[cid]
        app.console(msg)

    if do_fod_registration:
      for istage, [tpe, scale, lmax, niter] in enumerate(zip(linear_type, linear_scales, linear_lmax, linear_niter)):
        app.console('(%02i) %s scale: %.4f, niter: %i, lmax: %i' % (istage, tpe.ljust(9), scale, niter, lmax))
    else:
      for istage, [tpe, scale, niter] in enumerate(zip(linear_type, linear_scales, linear_niter)):
        app.console('(%02i) %s scale: %.4f, niter: %i, no reorientation' % (istage, tpe.ljust(9), scale, niter))

  datatype_option = ' -datatype float32'
  outofbounds_option = ' -nan'

  if not dononlinear:
    nl_scales = []
    nl_lmax = []
    nl_niter = []
    if app.ARGS.warp_dir:
      raise MRtrixError('warp_dir specified when no nonlinear registration is performed')
  else:
    nl_scales = [float(x) for x in app.ARGS.nl_scale.split(',')] if app.ARGS.nl_scale else DEFAULT_NL_SCALES
    nl_niter = [int(x) for x in app.ARGS.nl_niter.split(',')] if app.ARGS.nl_niter else DEFAULT_NL_NITER
    nl_lmax = [int(x) for x in app.ARGS.nl_lmax.split(',')] if app.ARGS.nl_lmax else DEFAULT_NL_LMAX

    if len(nl_scales) != len(nl_niter):
      raise MRtrixError('nl_scales and nl_niter schedules are not equal in length: scales stages: %s, niter stages: %s' % (len(nl_scales), len(nl_niter)))

    app.console('-' * 60)
    app.console('nonlinear registration stages:')
    app.console('-' * 60)
    if n_contrasts > 1:
      for cid in range(n_contrasts):
        app.console('\tcontrast "%s": %s, objective weight: %s' % (cns.suff[cid], cns.names[cid], cns.mc_weight_nl[cid]))

    if do_fod_registration:
      if len(nl_scales) != len(nl_lmax):
        raise MRtrixError('nl_scales and nl_lmax schedules are not equal in length: scales stages: %s, lmax stages: %s' % (len(nl_scales), len(nl_lmax)))

    if do_fod_registration:
      for istage, [scale, lmax, niter] in enumerate(zip(nl_scales, nl_lmax, nl_niter)):
        app.console('(%02i) nonlinear scale: %.4f, niter: %i, lmax: %i' % (istage, scale, niter, lmax))
    else:
      for istage, [scale, niter] in enumerate(zip(nl_scales, nl_niter)):
        app.console('(%02i) nonlinear scale: %.4f, niter: %i, no reorientation' % (istage, scale, niter))

  app.console('-' * 60)
  app.console('input images:')
  app.console('-' * 60)
  for inp in ins:
    app.console('\t' + inp.info())

  app.make_scratch_dir()
  app.goto_scratch_dir()

  for contrast in cns.suff:
    path.make_dir('input_transformed' + contrast)

  for contrast in cns.suff:
    path.make_dir('isfinite' + contrast)

  path.make_dir('linear_transforms_initial')
  path.make_dir('linear_transforms')
  for level in range(0, len(linear_scales)):
    path.make_dir('linear_transforms_%02i' % level)
  for level in range(0, len(nl_scales)):
    path.make_dir('warps_%02i' % level)

  if use_masks:
    path.make_dir('mask_transformed')
  write_log = app.VERBOSITY >= 2
  if write_log:
    path.make_dir('log')

  if initial_alignment == 'robust_mass':
    if not use_masks:
      raise MRtrixError('robust_mass initial alignment requires masks')
    path.make_dir('robust')

  if app.ARGS.copy_input:
    app.console('Copying images into scratch directory')
    for inp in ins:
      inp.cache_local()

  # Make initial template in average space using first contrast
  app.console('Generating initial template')
  input_filenames = [inp.get_ims_path(False)[0] for inp in ins]
  if voxel_size is None:
    run.command(['mraverageheader', input_filenames, 'average_header.mif', '-fill'])
  else:
    run.command(['mraverageheader', '-fill', input_filenames, '-', '|',
                 'mrgrid', '-', 'regrid', '-voxel', ','.join(map(str, voxel_size)), 'average_header.mif'])

  # crop average space to extent defined by original masks
  if use_masks:
    progress = app.ProgressBar('Importing input masks to average space for template cropping', len(ins))
    for inp in ins:
      run.command('mrtransform ' + inp.msk_path + ' -interp nearest -template average_header.mif ' + inp.msk_transformed)
      progress.increment()
    progress.done()
    run.command(['mrmath', [inp.msk_transformed for inp in ins], 'max', 'mask_initial.mif'])
    run.command('mrgrid average_header.mif crop -mask mask_initial.mif average_header_cropped.mif')
    run.function(os.remove, 'mask_initial.mif')
    run.function(os.remove, 'average_header.mif')
    run.function(shutil.move, 'average_header_cropped.mif', 'average_header.mif')
    progress = app.ProgressBar('Erasing temporary mask images', len(ins))
    for inp in ins:
      run.function(os.remove, inp.msk_transformed)
      progress.increment()
    progress.done()

  # create average space headers for other contrasts
  if n_contrasts > 1:
    avh3d = 'average_header3d.mif'
    avh4d = 'average_header4d.mif'
    if len(image.Header('average_header.mif').size()) == 3:
      run.command('mrconvert average_header.mif ' + avh3d)
    else:
      run.command('mrconvert average_header.mif -coord 3 0 -axes 0,1,2 ' + avh3d)
    run.command('mrconvert ' + avh3d + ' -axes 0,1,2,-1 ' + avh4d)
    for cid in range(n_contrasts):
      if cns.n_volumes[cid] == 0:
        run.function(copy, avh3d, 'average_header' + cns.suff[cid] + '.mif')
      elif cns.n_volumes[cid] == 1:
        run.function(copy, avh4d, 'average_header' + cns.suff[cid] + '.mif')
      else:
        run.command('mrcat ' + ' '.join([avh3d] * cns.n_volumes[cid]) + ' -axis 3 average_header' + cns.suff[cid] + '.mif')
    run.function(os.remove, avh3d)
    run.function(os.remove, avh4d)
  else:
    run.function(shutil.move, 'average_header.mif', 'average_header' + cns.suff[0] + '.mif')

  cns.templates = ['average_header' + csuff + '.mif' for csuff in cns.suff]

  if initial_alignment == 'none':
    progress = app.ProgressBar('Resampling input images to template space with no initial alignment', len(ins) * n_contrasts)
    for inp in ins:
      for cid in range(n_contrasts):
        run.command('mrtransform ' + inp.ims_path[cid] + c_mrtransform_reorientation[cid] + ' -interp linear ' +
                    '-template ' + cns.templates[cid] + ' ' + inp.ims_transformed[cid] +
                    outofbounds_option +
                    datatype_option)
        progress.increment()
    progress.done()

    if use_masks:
      progress = app.ProgressBar('Reslicing input masks to average header', len(ins))
      for inp in ins:
        run.command('mrtransform ' + inp.msk_path + ' ' + inp.msk_transformed + ' ' +
                    '-interp nearest -template ' + cns.templates[0] + ' ' +
                    datatype_option)
        progress.increment()
      progress.done()

    if nanmask_input:
      inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
                       [inp.msk_transformed for inp in ins for cid in range(n_contrasts)])

    if leave_one_out:
      calculate_isfinite(ins, cns)

    if not dolinear:
      for inp in ins:
        with open(os.path.join('linear_transforms_initial', inp.uid + '.txt'), 'w') as fout:
          fout.write('1 0 0 0\n0 1 0 0\n0 0 1 0\n0 0 0 1\n')

    run.function(copy, 'average_header' + cns.suff[0] + '.mif', 'average_header.mif')

  else:
    progress = app.ProgressBar('Performing initial rigid registration to template', len(ins))
    mask_option = ''
    cid = 0
    lmax_option = ' -rigid_lmax 0 ' if cns.fod_reorientation[cid] else ' -noreorientation '
    contrast_weight_option = cns.initial_alignment_weight_option
    for inp in ins:
      output_option = ' -rigid ' + os.path.join('linear_transforms_initial', inp.uid + '.txt')
      images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
      if use_masks:
        mask_option = ' -mask1 ' + inp.msk_path
        if initial_alignment == 'robust_mass':
          if not os.path.isfile('robust/template.mif'):
            if cns.n_volumes[cid] > 0:
              run.command('mrconvert ' + cns.templates[cid] + ' -coord 3 0 - | mrconvert - -axes 0,1,2 robust/template.mif')
            else:
              run.command('mrconvert ' + cns.templates[cid] + ' robust/template.mif')
          if n_contrasts > 1:
            cmd = ['mrcalc', inp.ims_path[cid], cns.mc_weight_initial_alignment[cid], '-mult']
            for cid in range(1, n_contrasts):
              cmd += [inp.ims_path[cid], cns.mc_weight_initial_alignment[cid], '-mult', '-add']
            contrast_weight_option = ''
            run.command(' '.join(cmd) +
                        ' - | mrfilter - zclean -zlower 3 -zupper 3 robust/image_' + inp.uid + '.mif'
                        ' -maskin ' + inp.msk_path + ' -maskout robust/mask_' + inp.uid + '.mif')
          else:
            run.command('mrfilter ' + inp.ims_path[0] + ' zclean -zlower 3 -zupper 3 robust/image_' + inp.uid + '.mif' +
                        ' -maskin ' + inp.msk_path + ' -maskout robust/mask_' + inp.uid + '.mif')
          images = 'robust/image_' + inp.uid + '.mif robust/template.mif'
          mask_option = ' -mask1 ' + 'robust/mask_' + inp.uid + '.mif'
          lmax_option = ''

      run.command('mrregister ' + images +
                  mask_option +
                  ' -rigid_scale 1 ' +
                  ' -rigid_niter 0 ' +
                  ' -type rigid ' +
                  lmax_option +
                  contrast_weight_option +
                  ' -rigid_init_translation ' + initial_alignment.replace('robust_', '') + ' ' +
                  datatype_option +
                  output_option)
      # translate input images to centre of mass without interpolation
      for cid in range(n_contrasts):
        run.command('mrtransform ' + inp.ims_path[cid] + c_mrtransform_reorientation[cid] +
                    ' -linear ' + os.path.join('linear_transforms_initial', inp.uid + '.txt') +
                    ' ' + inp.ims_transformed[cid] + "_translated.mif" + datatype_option)
      if use_masks:
        run.command('mrtransform ' + inp.msk_path +
                    ' -linear ' + os.path.join('linear_transforms_initial', inp.uid + '.txt') +
                    ' ' + inp.msk_transformed + "_translated.mif" +
                    datatype_option)
      progress.increment()
    # update average space of first contrast to new extent, delete other average space images
    run.command('mraverageheader ' + ' '.join([inp.ims_transformed[cid] + '_translated.mif' for inp in ins]) + ' average_header_tight.mif')
    progress.done()

    if voxel_size is None:
      run.command('mrgrid average_header_tight.mif pad -uniform 10 average_header.mif', force=True)
    else:
      run.command('mrgrid average_header_tight.mif pad -uniform 10 - | '
                  'mrgrid - regrid -voxel ' + ','.join(map(str, voxel_size)) + ' average_header.mif', force=True)
    run.function(os.remove, 'average_header_tight.mif')
    for cid in range(1, n_contrasts):
      run.function(os.remove, 'average_header' + cns.suff[cid] + '.mif')

    if use_masks:
      # reslice masks
      progress = app.ProgressBar('Reslicing input masks to average header', len(ins))
      for inp in ins:
        run.command('mrtransform ' + inp.msk_transformed + '_translated.mif' + ' ' + inp.msk_transformed + ' ' +
                    '-interp nearest -template average_header.mif' + datatype_option)
        progress.increment()
      progress.done()
      # crop average space to extent defined by translated masks
      run.command(['mrmath', [inp.msk_transformed for inp in ins], 'max', 'mask_translated.mif'])
      run.command('mrgrid average_header.mif crop -mask mask_translated.mif average_header_cropped.mif')
      # pad average space to allow for deviation from initial alignment
      run.command('mrgrid average_header_cropped.mif pad -uniform 10 average_header.mif', force=True)
      run.function(os.remove, 'average_header_cropped.mif')
      # reslice masks
      progress = app.ProgressBar('Reslicing masks to new padded average header', len(ins))
      for inp in ins:
        run.command('mrtransform ' + inp.msk_transformed + '_translated.mif ' + inp.msk_transformed + ' ' +
                    '-interp nearest -template average_header.mif' + datatype_option, force=True)
        run.function(os.remove, inp.msk_transformed + '_translated.mif')
        progress.increment()
      progress.done()
      run.function(os.remove, 'mask_translated.mif')

    # reslice images
    progress = app.ProgressBar('Reslicing input images to average header', len(ins) * n_contrasts)
    for cid in range(n_contrasts):
      for inp in ins:
        run.command('mrtransform ' + c_mrtransform_reorientation[cid] + inp.ims_transformed[cid] + '_translated.mif ' +
                    inp.ims_transformed[cid] + ' ' +
                    ' -interp linear -template average_header.mif' +
                    outofbounds_option +
                    datatype_option)
        run.function(os.remove, inp.ims_transformed[cid] + '_translated.mif')
        progress.increment()
    progress.done()

    if nanmask_input:
      inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
                       [inp.msk_transformed for inp in ins for cid in range(n_contrasts)])

    if leave_one_out:
      calculate_isfinite(ins, cns)

  cns.templates = ['initial_template' + contrast + '.mif' for contrast in cns.suff]
  for cid in range(n_contrasts):
    aggregate(ins, 'initial_template' + cns.suff[cid] + '.mif', cid, agg_measure)
    if cns.n_volumes[cid] == 1:
      run.function(shutil.move, 'initial_template' + cns.suff[cid] + '.mif', 'tmp.mif')
      run.command('mrconvert tmp.mif initial_template' + cns.suff[cid] + '.mif -axes 0,1,2,-1')

  # Optimise template with linear registration
  if not dolinear:
    for inp in ins:
      run.function(copy, os.path.join('linear_transforms_initial', inp.uid+'.txt'),
                   os.path.join('linear_transforms', inp.uid+'.txt'))
  else:
    level = 0
    regtype = linear_type[0]
    def linear_msg():
      return 'Optimising template with linear registration (stage {0} of {1}; {2})'.format(level + 1, len(linear_scales), regtype)
    progress = app.ProgressBar(linear_msg, len(linear_scales) * len(ins) * (1 + n_contrasts + int(use_masks)))
    for level, (regtype, scale, niter, lmax) in enumerate(zip(linear_type, linear_scales, linear_niter, linear_lmax)):
      for inp in ins:
        initialise_option = ''
        if use_masks:
          mask_option = ' -mask1 ' + inp.msk_path
        else:
          mask_option = ''
        lmax_option = ' -noreorientation'
        metric_option = ''
        mrregister_log_option = ''
        if regtype == 'rigid':
          scale_option = ' -rigid_scale ' + str(scale)
          niter_option = ' -rigid_niter ' + str(niter)
          regtype_option = ' -type rigid'
          output_option = ' -rigid ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')
          contrast_weight_option = cns.rigid_weight_option
          if level > 0:
            initialise_option = ' -rigid_init_matrix ' + os.path.join('linear_transforms_%02i' % (level - 1), inp.uid + '.txt')
          if do_fod_registration:
            lmax_option = ' -rigid_lmax ' + str(lmax)
          if linear_estimator:
            metric_option = ' -rigid_metric.diff.estimator ' + linear_estimator
          if app.VERBOSITY >= 2:
            mrregister_log_option = ' -info -rigid_log ' + os.path.join('log', inp.uid + contrast[cid] + "_" + str(level) + '.log')
        else:
          scale_option = ' -affine_scale ' + str(scale)
          niter_option = ' -affine_niter ' + str(niter)
          regtype_option = ' -type affine'
          output_option = ' -affine ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')
          contrast_weight_option = cns.affine_weight_option
          if level > 0:
            initialise_option = ' -affine_init_matrix ' + os.path.join('linear_transforms_%02i' % (level - 1), inp.uid + '.txt')
          if do_fod_registration:
            lmax_option = ' -affine_lmax ' + str(lmax)
          if linear_estimator:
            metric_option = ' -affine_metric.diff.estimator ' + linear_estimator
          if write_log:
            mrregister_log_option = ' -info -affine_log ' + os.path.join('log', inp.uid + contrast[cid] + "_" + str(level) + '.log')

        if leave_one_out:
          tmpl = []
          for cid in range(n_contrasts):
            isfinite = 'isfinite%s/%s.mif' % (cns.suff[cid], inp.uid)
            weight = inp.aggregation_weight if inp.aggregation_weight is not None else '1'
            # loo = (template * weighted sum - weight * this) / (weighted sum - weight)
            run.command('mrcalc ' + cns.isfinite_count[cid] + ' ' + isfinite + ' -sub - | mrcalc ' + cns.templates[cid] +
                        ' ' + cns.isfinite_count[cid] + ' -mult ' + inp.ims_transformed[cid] + ' ' + weight + ' -mult ' +
                        ' -sub - -div loo_%s' % cns.templates[cid], force=True)
            tmpl.append('loo_%s' % cns.templates[cid])
          images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, tmpl)])
        else:
          images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
        command = 'mrregister ' + images + \
                  initialise_option + \
                  mask_option + \
                  scale_option + \
                  niter_option + \
                  lmax_option + \
                  regtype_option + \
                  metric_option + \
                  datatype_option + \
                  contrast_weight_option + \
                  output_option + \
                  mrregister_log_option
        run.command(command, force=True)
        check_linear_transformation(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt'), command,
                                    pause_on_warn=do_pause_on_warn)
        if leave_one_out:
          for im_temp in tmpl:
            run.function(os.remove, im_temp)
        progress.increment()

      # Here we ensure the template doesn't drift or scale
      # TODO matrix avarage might produce a large FOV for large rotations  # pylint: disable=fixme
      run.command('transformcalc ' + ' '.join(path.all_in_dir('linear_transforms_%02i' % level)) +
                  ' average linear_transform_average.txt -quiet', force=True)
      if linear_type[level] == 'rigid':
        run.command('transformcalc linear_transform_average.txt rigid linear_transform_average.txt -quiet', force=True)
      run.command('transformcalc linear_transform_average.txt invert linear_transform_average_inv.txt -quiet', force=True)

      average_inv = matrix.load_transform('linear_transform_average_inv.txt')
      if average_inv is not None:
        for inp in ins:
          transform = matrix.dot(matrix.load_transform(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt')), average_inv)
          matrix.save_transform(os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt'), transform, force=True)

      for cid in range(n_contrasts):
        for inp in ins:
          run.command('mrtransform ' + c_mrtransform_reorientation[cid] + inp.ims_path[cid] +
                      ' -template ' + cns.templates[cid] +
                      ' -linear ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt') +
                      ' ' + inp.ims_transformed[cid] +
                      outofbounds_option +
                      datatype_option,
                      force=True)
          progress.increment()

      if use_masks:
        for inp in ins:
          run.command('mrtransform ' + inp.msk_path +
                      ' -template ' + cns.templates[0] +
                      ' -interp nearest' +
                      ' -linear ' + os.path.join('linear_transforms_%02i' % level, inp.uid + '.txt') +
                      ' ' + inp.msk_transformed,
                      force=True)
          progress.increment()

      if nanmask_input:
        inplace_nan_mask([inp.ims_transformed[cid] for inp in ins for cid in range(n_contrasts)],
                         [inp.msk_transformed for inp in ins for cid in range(n_contrasts)])

      if leave_one_out:
        calculate_isfinite(ins, cns)

      for cid in range(n_contrasts):
        cns.templates[cid] = 'linear_template%02i%s.mif' % (level, cns.suff[cid])
        aggregate(ins, cns.templates[cid], cid, agg_measure)
        if cns.n_volumes[cid] == 1:
          run.function(shutil.move, cns.templates[cid], 'tmp.mif')
          run.command('mrconvert tmp.mif ' + cns.templates[cid] + ' -axes 0,1,2,-1')
          run.function(os.remove, 'tmp.mif')

    for entry in os.listdir('linear_transforms_%02i' % level):
      run.function(copy, os.path.join('linear_transforms_%02i' % level, entry), os.path.join('linear_transforms', entry))
    progress.done()

  # Create a template mask for nl registration by taking the intersection of all transformed input masks and dilating
  if use_masks and (dononlinear or app.ARGS.template_mask):
    run.command(['mrmath', path.all_in_dir('mask_transformed')] +
                'min - | maskfilter - median - | maskfilter - dilate -npass 5 init_nl_template_mask.mif'.split(), force=True)
    current_template_mask = 'init_nl_template_mask.mif'

  if dononlinear:
    path.make_dir('warps')
    level = 0
    def nonlinear_msg():
      return 'Optimising template with non-linear registration (stage {0} of {1})'.format(level + 1, len(nl_scales))
    progress = app.ProgressBar(nonlinear_msg, len(nl_scales) * len(ins))
    for level, (scale, niter, lmax) in enumerate(zip(nl_scales, nl_niter, nl_lmax)):
      for inp in ins:
        if level > 0:
          initialise_option = ' -nl_init ' + os.path.join('warps_%02i' % (level - 1), inp.uid + '.mif')
          scale_option = ''
        else:
          scale_option = ' -nl_scale ' + str(scale)
          if not doaffine:  # rigid or no previous linear stage
            initialise_option = ' -rigid_init_matrix ' + os.path.join('linear_transforms', inp.uid + '.txt')
          else:
            initialise_option = ' -affine_init_matrix ' + os.path.join('linear_transforms', inp.uid + '.txt')

        if use_masks:
          mask_option = ' -mask1 ' + inp.msk_path + ' -mask2 ' + current_template_mask
        else:
          mask_option = ''

        if do_fod_registration:
          lmax_option = ' -nl_lmax ' + str(lmax)
        else:
          lmax_option = ' -noreorientation'

        contrast_weight_option = cns.nl_weight_option

        if leave_one_out:
          tmpl = []
          for cid in range(n_contrasts):
            isfinite = 'isfinite%s/%s.mif' % (cns.suff[cid], inp.uid)
            weight = inp.aggregation_weight if inp.aggregation_weight is not None else '1'
            # loo = (template * weighted sum - weight * this) / (weighted sum - weight)
            run.command('mrcalc ' + cns.isfinite_count[cid] + ' ' + isfinite + ' -sub - | mrcalc ' + cns.templates[cid] +
                        ' ' + cns.isfinite_count[cid] + ' -mult ' + inp.ims_transformed[cid] + ' ' + weight + ' -mult ' +
                        ' -sub - -div loo_%s' % cns.templates[cid], force=True)
            tmpl.append('loo_%s' % cns.templates[cid])
          images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, tmpl)])
        else:
          images = ' '.join([p + ' ' + t for p, t in zip(inp.ims_path, cns.templates)])
        run.command('mrregister ' + images +
                    ' -type nonlinear' +
                    ' -nl_niter ' + str(nl_niter[level]) +
                    ' -nl_warp_full ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
                    ' -transformed ' +
                    ' -transformed '.join([inp.ims_transformed[cid] for cid in range(n_contrasts)]) + ' ' +
                    ' -nl_update_smooth ' + app.ARGS.nl_update_smooth +
                    ' -nl_disp_smooth ' + app.ARGS.nl_disp_smooth +
                    ' -nl_grad_step ' + app.ARGS.nl_grad_step +
                    initialise_option +
                    contrast_weight_option +
                    scale_option +
                    mask_option +
                    datatype_option +
                    outofbounds_option +
                    lmax_option,
                    force=True)

        if use_masks:
          run.command('mrtransform ' + inp.msk_path +
                      ' -template ' + cns.templates[0] +
                      ' -warp_full ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
                      ' ' + inp.msk_transformed +
                      ' -interp nearest ',
                      force=True)

        if leave_one_out:
          for im_temp in tmpl:
            run.function(os.remove, im_temp)

        if level > 0:
          run.function(os.remove, os.path.join('warps_%02i' % (level - 1), inp.uid + '.mif'))

        progress.increment(nonlinear_msg())

      if nanmask_input:
        inplace_nan_mask([_inp.ims_transformed[cid] for _inp in ins for cid in range(n_contrasts)],
                         [_inp.msk_transformed for _inp in ins for cid in range(n_contrasts)])

      if leave_one_out:
        calculate_isfinite(ins, cns)

      for cid in range(n_contrasts):
        cns.templates[cid] = 'nl_template%02i%s.mif' % (level, cns.suff[cid])
        aggregate(ins, cns.templates[cid], cid, agg_measure)
        if cns.n_volumes[cid] == 1:
          run.function(shutil.move, cns.templates[cid], 'tmp.mif')
          run.command('mrconvert tmp.mif ' + cns.templates[cid] + ' -axes 0,1,2,-1')
          run.function(os.remove, 'tmp.mif')

      if use_masks:
        run.command(['mrmath', path.all_in_dir('mask_transformed')] +
                    'min - | maskfilter - median - | '.split() +
                    ('maskfilter - dilate -npass 5 nl_template_mask' + str(level) + '.mif').split())
        current_template_mask = 'nl_template_mask' + str(level) + '.mif'

      if level < len(nl_scales) - 1:
        if scale < nl_scales[level + 1]:
          upsample_factor = nl_scales[level + 1] / scale
          for inp in ins:
            run.command('mrgrid ' + os.path.join('warps_%02i' % level, inp.uid + '.mif') +
                        ' regrid -scale %f tmp.mif' % upsample_factor, force=True)
            run.function(shutil.move, 'tmp.mif', os.path.join('warps_%02i' % level, inp.uid + '.mif'))
      else:
        for inp in ins:
          run.function(shutil.move, os.path.join('warps_%02i' % level, inp.uid + '.mif'), 'warps')
    progress.done()

  for cid in range(n_contrasts):
    run.command('mrconvert ' + cns.templates[cid] + ' ' + cns.templates_out[cid],
                mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE)

  if app.ARGS.warp_dir:
    warp_path = path.from_user(app.ARGS.warp_dir, False)
    if os.path.exists(warp_path):
      run.function(shutil.rmtree, warp_path)
    os.makedirs(warp_path)
    progress = app.ProgressBar('Copying non-linear warps to output directory "' + warp_path + '"', len(ins))
    for inp in ins:
      keyval = image.Header(os.path.join('warps', inp.uid + '.mif')).keyval()
      keyval = dict((k, keyval[k]) for k in ('linear1', 'linear2'))
      json_path = os.path.join('warps', inp.uid + '.json')
      with open(json_path, 'w') as json_file:
        json.dump(keyval, json_file)
      run.command('mrconvert ' + os.path.join('warps', inp.uid + '.mif') + ' ' +
                  path.quote(os.path.join(warp_path, xcontrast_xsubject_pre_postfix[0] +
                                          inp.uid + xcontrast_xsubject_pre_postfix[1] + '.mif')),
                  mrconvert_keyval=json_path, force=app.FORCE_OVERWRITE)
      progress.increment()
    progress.done()

  if app.ARGS.linear_transformations_dir:
    linear_transformations_path = path.from_user(app.ARGS.linear_transformations_dir, False)
    if os.path.exists(linear_transformations_path):
      run.function(shutil.rmtree, linear_transformations_path)
    os.makedirs(linear_transformations_path)
    for inp in ins:
      trafo = matrix.load_transform(os.path.join('linear_transforms', inp.uid + '.txt'))
      matrix.save_transform(os.path.join(linear_transformations_path,
                                         xcontrast_xsubject_pre_postfix[0] + inp.uid
                                         + xcontrast_xsubject_pre_postfix[1] + '.txt'),
                            trafo,
                            force=app.FORCE_OVERWRITE)

  if app.ARGS.transformed_dir:
    for cid, trdir in enumerate(app.ARGS.transformed_dir):
      transformed_path = path.from_user(trdir, False)
      if os.path.exists(transformed_path):
        run.function(shutil.rmtree, transformed_path)
      os.makedirs(transformed_path)
      progress = app.ProgressBar('Copying transformed images to output directory "' + transformed_path + '"', len(ins))
      for inp in ins:
        run.command(['mrconvert', inp.ims_transformed[cid], os.path.join(transformed_path, inp.ims_filenames[cid])],
                    mrconvert_keyval=inp.get_ims_path(False)[cid], force=app.FORCE_OVERWRITE)
        progress.increment()
      progress.done()

  if app.ARGS.template_mask:
    run.command('mrconvert ' + current_template_mask + ' ' + path.from_user(app.ARGS.template_mask, True),
                mrconvert_keyval='NULL', force=app.FORCE_OVERWRITE)


# Execute the script
import mrtrix3
mrtrix3.execute() #pylint: disable=no-member