1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "memory.h"
#include "version.h"
#include "dwi/fmls.h"
#include "dwi/tractography/file.h"
#include "dwi/tractography/properties.h"
#include "dwi/tractography/mapping/loader.h"
#include "dwi/tractography/mapping/mapper.h"
#include "dwi/tractography/mapping/mapping.h"
#include "dwi/tractography/SIFT/model_base.h"
using namespace MR;
using namespace MR::DWI;
using namespace App;
void usage ()
{
AUTHOR = "David Raffelt (david.raffelt@florey.edu.au) and Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Obtain an estimate of fibre connectivity between two regions using AFD and streamlines tractography";
DESCRIPTION
+ "This estimate is obtained by determining a fibre volume (AFD) occupied by the pathway "
"of interest, and dividing by the streamline length."
+ "If only the streamlines belonging to the pathway of interest are provided, then "
"ALL of the fibre volume within each fixel selected will contribute to the result. "
"If the -wbft option is used to provide whole-brain fibre-tracking (of which the pathway of "
"interest should contain a subset), only the fraction of the fibre volume in each fixel "
"estimated to belong to the pathway of interest will contribute to the result."
+ "Use -quiet to suppress progress messages and output fibre connectivity value only."
+ "For valid comparisons of AFD connectivity across scans, images MUST be intensity "
"normalised and bias field corrected, and a common response function for all subjects "
"must be used."
+ "Note that the sum of the AFD is normalised by streamline length to "
"account for subject differences in fibre bundle length. This normalisation results in a measure "
"that is more related to the cross-sectional volume of the tract (and therefore 'connectivity'). "
"Note that SIFT-ed tract count is a superior measure because it is unaffected by tangential yet unrelated "
"fibres. However, AFD connectivity may be used as a substitute when Anatomically Constrained Tractography "
"is not possible due to uncorrectable EPI distortions, and SIFT may therefore not be as effective."
+ "Longer discussion regarding this command can additionally be found at: "
"https://mrtrix.readthedocs.io/en/" MRTRIX_BASE_VERSION "/concepts/afd_connectivity.html "
"(as well as in the relevant reference).";
REFERENCES
+ "Smith, R. E.; Raffelt, D.; Tournier, J.-D.; Connelly, A. " // Internal
"Quantitative Streamlines Tractography: Methods and Inter-Subject Normalisation. "
"OHBM Aperture, 10.52294/ApertureNeuro.2022.2.NEOD9565.";
ARGUMENTS
+ Argument ("image", "the input FOD image.").type_image_in()
+ Argument ("tracks", "the input track file defining the bundle of interest.").type_tracks_in();
OPTIONS
+ Option ("wbft", "provide a whole-brain fibre-tracking data set (of which the input track file "
"should be a subset), to improve the estimate of fibre bundle volume in the "
"presence of partial volume")
+ Argument ("tracks").type_tracks_in()
+ Option ("afd_map", "output a 3D image containing the AFD estimated for each voxel.")
+ Argument ("image").type_image_out()
+ Option ("all_fixels", "if whole-brain fibre-tracking is NOT provided, then if multiple fixels within "
"a voxel are traversed by the pathway of interest, by default the fixel with the "
"greatest streamlines density is selected to contribute to the AFD in that voxel. "
"If this option is provided, then ALL fixels with non-zero streamlines density "
"will contribute to the result, even if multiple fixels per voxel are selected.");
}
using value_type = float;
using DWI::Tractography::Mapping::SetDixel;
using DWI::Tractography::SIFT::FixelBase;
class Fixel : public FixelBase
{ MEMALIGN(Fixel)
public:
Fixel () : FixelBase (), length (0.0) { }
Fixel (const FMLS::FOD_lobe& lobe) : FixelBase (lobe), length (0.0) { }
Fixel (const Fixel& that) : FixelBase (that), length (that.length) { }
void add_to_selection (const value_type l) { length += l; }
value_type get_selected_volume (const value_type l) const { return get_TD() ? (get_FOD() * (l / get_TD())) : 0.0; }
value_type get_selected_volume () const { return get_TD() ? (get_FOD() * (length / get_TD())) : 0.0; }
value_type get_selected_length() const { return length; }
bool is_selected() const { return length; }
private:
value_type length;
};
class AFDConnectivity : public DWI::Tractography::SIFT::ModelBase<Fixel>
{ MEMALIGN(AFDConnectivity)
public:
AFDConnectivity (Image<value_type>& fod_buffer, const DWI::Directions::FastLookupSet& dirs, const std::string& tck_path, const std::string& wbft_path) :
DWI::Tractography::SIFT::ModelBase<Fixel> (fod_buffer, dirs),
have_wbft (wbft_path.size()),
all_fixels (false),
mapper (fod_buffer, dirs),
v_fod (fod_buffer)
{
if (have_wbft) {
perform_FOD_segmentation (fod_buffer);
map_streamlines (wbft_path);
} else {
fmls.reset (new DWI::FMLS::Segmenter (dirs, Math::SH::LforN (fod_buffer.size (3))));
}
mapper.set_upsample_ratio (DWI::Tractography::Mapping::determine_upsample_ratio (fod_buffer, tck_path, 0.1));
mapper.set_use_precise_mapping (true);
}
void set_all_fixels (const bool i) { all_fixels = i; }
value_type get (const std::string& path);
void save (const std::string& path);
private:
const bool have_wbft;
bool all_fixels;
DWI::Tractography::Mapping::TrackMapperBase mapper;
Image<value_type> v_fod;
std::unique_ptr<DWI::FMLS::Segmenter> fmls;
using Fixel_map<Fixel>::accessor;
};
value_type AFDConnectivity::get (const std::string& path)
{
Tractography::Properties properties;
Tractography::Reader<value_type> reader (path, properties);
const size_t track_count = (properties.find ("count") == properties.end() ? 0 : to<size_t>(properties["count"]));
DWI::Tractography::Mapping::TrackLoader loader (reader, track_count, "summing apparent fibre density within track");
// If WBFT is provided, this is the sum of (volume/length) across streamlines
// Otherwise, it's a sum of lengths of all streamlines (for later scaling by mean streamline length)
double sum_contributions = 0.0;
size_t count = 0;
Tractography::Streamline<value_type> tck;
while (loader (tck)) {
++count;
SetDixel dixels;
mapper (tck, dixels);
double this_length = 0.0, this_volume = 0.0;
for (SetDixel::const_iterator i = dixels.begin(); i != dixels.end(); ++i) {
this_length += i->get_length();
// If wbft has not been provided (i.e. FODs have not been pre-segmented), need to
// check to see if any data have been provided for this voxel; and if not yet,
// run the segmenter
if (!have_wbft) {
VoxelAccessor v (accessor());
assign_pos_of (*i, 0, 3).to (v);
if (!v.value()) {
assign_pos_of (*i, 0, 3).to (v_fod);
DWI::FMLS::SH_coefs fod_data;
DWI::FMLS::FOD_lobes fod_lobes;
fod_data.vox[0] = v_fod.index (0); fod_data.vox[1] = v_fod.index (1); fod_data.vox[2] = v_fod.index (2);
fod_data.resize (v_fod.size (3));
for (auto i = Loop(3) (v_fod); i; ++i)
fod_data[v_fod.index (3)] = v_fod.value();
(*fmls) (fod_data, fod_lobes);
(*this) (fod_lobes);
}
}
const size_t fixel_index = dixel2fixel (*i);
Fixel& fixel = fixels[fixel_index];
fixel.add_to_selection (i->get_length());
if (have_wbft)
this_volume += fixel.get_selected_volume (i->get_length());
}
if (have_wbft)
sum_contributions += (this_volume / this_length);
else
sum_contributions += this_length;
}
if (!have_wbft) {
// Streamlines define a fixel mask; go through and get all the fibre volumes
double sum_volumes = 0.0;
if (all_fixels) {
// All fixels contribute to the result
for (vector<Fixel>::const_iterator i = fixels.begin(); i != fixels.end(); ++i) {
if (i->is_selected())
sum_volumes += i->get_FOD();
}
} else {
// Only allow one fixel per voxel to contribute to the result
VoxelAccessor v (accessor());
for (auto l = Loop(v) (v); l; ++l) {
if (v.value()) {
value_type voxel_afd = 0.0, max_td = 0.0;
for (Fixel_map<Fixel>::Iterator i = begin (v); i; ++i) {
if (i().get_selected_length() > max_td) {
max_td = i().get_selected_length();
voxel_afd = i().get_FOD();
}
}
sum_volumes += voxel_afd;
}
}
}
// sum_contributions currently stores sum of streamline lengths;
// turn into a mean length, then combine with volume to get a connectivity value
const double mean_length = sum_contributions / double(count);
sum_contributions = sum_volumes / mean_length;
}
return sum_contributions;
}
void AFDConnectivity::save (const std::string& path)
{
auto out = Image<value_type>::create (path, Fixel_map<Fixel>::header());
VoxelAccessor v (accessor());
for (auto l = Loop(v) (v, out); l; ++l) {
value_type value = 0.0;
if (have_wbft) {
for (Fixel_map<Fixel>::Iterator i = begin (v); i; ++i)
value += i().get_selected_volume();
} else if (all_fixels) {
for (Fixel_map<Fixel>::Iterator i = begin (v); i; ++i)
value += (i().is_selected() ? i().get_FOD() : 0.0);
} else {
value_type max_td = 0.0;
for (Fixel_map<Fixel>::Iterator i = begin (v); i; ++i) {
if (i().get_selected_length() > max_td) {
max_td = i().get_selected_length();
value = i().get_FOD();
}
}
}
out.value() = value;
}
}
void run ()
{
auto opt = get_options ("wbft");
const std::string wbft_path = opt.size() ? str(opt[0][0]) : "";
DWI::Directions::FastLookupSet dirs (1281);
auto fod = Image<value_type>::open (argument[0]);
Math::SH::check (fod);
check_3D_nonunity (fod);
AFDConnectivity model (fod, dirs, argument[1], wbft_path);
opt = get_options ("all_fixels");
model.set_all_fixels (opt.size());
const value_type connectivity_value = model.get (argument[1]);
// output the AFD sum using std::cout. This enables output to be redirected to a file without the console output.
std::cout << connectivity_value << std::endl;
opt = get_options ("afd_map");
if (opt.size())
model.save (opt[0][0]);
}
|