File: amp2response.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (380 lines) | stat: -rw-r--r-- 14,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include <Eigen/Dense>

#include "command.h"
#include "header.h"
#include "image.h"
#include "image_helpers.h"
#include "types.h"
#include "dwi/gradient.h"
#include "dwi/shells.h"
#include "math/constrained_least_squares.h"
#include "math/rng.h"
#include "math/sphere.h"
#include "math/SH.h"
#include "math/ZSH.h"




using namespace MR;
using namespace App;



void usage ()
{

  AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Estimate response function coefficients based on the DWI signal in single-fibre voxels";

  DESCRIPTION
   + "This command uses the image data from all selected single-fibre voxels concurrently, "
     "rather than simply averaging their individual spherical harmonic coefficients. It also "
     "ensures that the response function is non-negative, and monotonic (i.e. its amplitude "
     "must increase from the fibre direction out to the orthogonal plane)."

   + "If multi-shell data are provided, and one or more b-value shells are not explicitly "
     "requested, the command will generate a response function for every b-value shell "
     "(including b=0 if present).";

  ARGUMENTS
    + Argument ("amps", "the amplitudes image").type_image_in()
    + Argument ("mask", "the mask containing the voxels from which to estimate the response function").type_image_in()
    + Argument ("directions", "a 4D image containing the estimated fibre directions").type_image_in()
    + Argument ("response", "the output zonal spherical harmonic coefficients").type_file_out();

  OPTIONS
    + Option ("isotropic", "estimate an isotropic response function (lmax=0 for all shells)")

    + Option ("noconstraint", "disable the non-negativity and monotonicity constraints")

    + Option ("directions", "provide an external text file containing the directions along which the amplitudes are sampled")
      + Argument("path").type_file_in()

    + DWI::ShellsOption

    + Option ("lmax", "specify the maximum harmonic degree of the response function to estimate "
                      "(can be a comma-separated list for multi-shell data)")
      + Argument ("values").type_sequence_int();

  REFERENCES
    + "Smith, R. E.; Dhollander, T. & Connelly, A. " // Internal
      "Constrained linear least squares estimation of anisotropic response function for spherical deconvolution. "
      "ISMRM Workshop on Breaking the Barriers of Diffusion MRI, 23.";
}



Eigen::Matrix<default_type, 3, 3> gen_rotation_matrix (const Eigen::Vector3d& dir)
{
  static Math::RNG::Normal<default_type> rng;
  // Generates a matrix that will rotate a unit vector into a new frame of reference,
  //   where the peak direction of the FOD is aligned in Z (3rd dimension)
  // Previously this was done using the tensor eigenvectors
  // Here the other two axes are determined at random (but both are orthogonal to the FOD peak direction)
  Eigen::Matrix<default_type, 3, 3> R;
  R (2, 0) = dir[0]; R (2, 1) = dir[1]; R (2, 2) = dir[2];
  Eigen::Vector3d vec2 (rng(), rng(), rng());
  vec2 = dir.cross (vec2);
  vec2.normalize();
  R (0, 0) = vec2[0]; R (0, 1) = vec2[1]; R (0, 2) = vec2[2];
  Eigen::Vector3d vec3 = dir.cross (vec2);
  vec3.normalize();
  R (1, 0) = vec3[0]; R (1, 1) = vec3[1]; R (1, 2) = vec3[2];
  return R;
}


vector<size_t> all_volumes (const size_t num)
{
  vector<size_t> result (num);
  for (size_t i = 0; i != num; ++i)
    result[i] = i;
  return result;
}




class Accumulator { MEMALIGN(Accumulator)
  public:
    class Shared { MEMALIGN(Shared)
      public:
        Shared (int lmax, const vector<size_t>& volumes, const Eigen::MatrixXd& dirs) :
          lmax (lmax),
          dirs (dirs),
          volumes (volumes),
          M (Eigen::MatrixXd::Zero (Math::ZSH::NforL (lmax), Math::ZSH::NforL (lmax))),
          b (Eigen::VectorXd::Zero (M.rows())),
          count (0) { }

        const int lmax;
        const Eigen::MatrixXd& dirs;
        const vector<size_t>& volumes;
        Eigen::MatrixXd M;
        Eigen::VectorXd b;
        size_t count;
    };

    Accumulator (Shared& shared) :
      S (shared),
      amplitudes (S.volumes.size()),
      b (S.b),
      M (S.M),
      count (0),
      rotated_dirs_cartesian (S.dirs.rows(), 3) { }

    ~Accumulator ()
    {
      // accumulate results from all threads:
      S.M += M;
      S.b += b;
      S.count += count;
    }

    void operator() (Image<float>& amp_image, Image<float>& dir_image, Image<bool>& mask)
    {
      if (mask.value()) {
        ++count;

        // Grab the fibre direction
        Eigen::Vector3d fibre_dir;
        for (dir_image.index(3) = 0; dir_image.index(3) != 3; ++dir_image.index(3))
          fibre_dir[dir_image.index(3)] = dir_image.value();
        fibre_dir.normalize();

        // Rotate the directions into a new reference frame,
        //   where the Z axis is defined by the specified direction
        auto R = gen_rotation_matrix (fibre_dir);
        rotated_dirs_cartesian.transpose() = R * S.dirs.transpose();

        // Convert directions from Euclidean space to azimuth/elevation pairs
        Eigen::MatrixXd rotated_dirs_azel = Math::Sphere::cartesian2spherical (rotated_dirs_cartesian);

        // Constrain elevations to between 0 and pi/2
        for (ssize_t i = 0; i != rotated_dirs_azel.rows(); ++i) {
          if (rotated_dirs_azel (i, 1) > Math::pi_2) {
            if (rotated_dirs_azel (i, 0) > Math::pi)
              rotated_dirs_azel (i, 0) -= Math::pi;
            else
              rotated_dirs_azel (i, 0) += Math::pi;
            rotated_dirs_azel (i, 1) = Math::pi - rotated_dirs_azel (i, 1);
          }
        }

        // Generate the ZSH -> amplitude transform
        transform = Math::ZSH::init_amp_transform<default_type> (rotated_dirs_azel.col(1), S.lmax);

        // Grab the image data
        for (size_t i = 0; i != S.volumes.size(); ++i) {
          amp_image.index(3) = S.volumes[i];
          amplitudes[i] = amp_image.value();
        }

        // accumulate results:
        b += transform.transpose() * amplitudes;
        M.selfadjointView<Eigen::Lower>().rankUpdate (transform.transpose());
      }
    }

  protected:
    Shared& S;
    Eigen::VectorXd amplitudes, b;
    Eigen::MatrixXd M, transform;
    size_t count;
    Eigen::Matrix<default_type, Eigen::Dynamic, 3> rotated_dirs_cartesian;
};


void run ()
{

  // Get directions from either selecting a b-value shell, or the header, or external file
  auto header = Header::open (argument[0]);

  // May be dealing with multiple shells
  vector<Eigen::MatrixXd> dirs_azel;
  vector<vector<size_t>> volumes;
  std::unique_ptr<DWI::Shells> shells;

  auto opt = get_options ("directions");
  if (opt.size()) {
    dirs_azel.push_back (load_matrix (opt[0][0]));
    volumes.push_back (all_volumes (dirs_azel.size()));
  } else {
    auto hit = header.keyval().find ("directions");
    if (hit != header.keyval().end()) {
      vector<default_type> dir_vector;
      for (auto line : split_lines (hit->second)) {
        auto v = parse_floats (line);
        dir_vector.insert (dir_vector.end(), v.begin(), v.end());
      }
      Eigen::MatrixXd directions (dir_vector.size() / 2, 2);
      for (size_t i = 0; i < dir_vector.size(); i += 2) {
        directions (i/2, 0) = dir_vector[i];
        directions (i/2, 1) = dir_vector[i+1];
      }
      dirs_azel.push_back (std::move (directions));
      volumes.push_back (all_volumes (dirs_azel.size()));
    } else {
      auto grad = DWI::get_DW_scheme (header);
      shells.reset (new DWI::Shells (grad));
      shells->select_shells (false, false, false);
      for (size_t i = 0; i != shells->count(); ++i) {
        volumes.push_back ((*shells)[i].get_volumes());
        dirs_azel.push_back (DWI::gen_direction_matrix (grad, volumes.back()));
      }
    }
  }

  vector<uint32_t> lmax;
  uint32_t max_lmax = 0;
  opt = get_options ("lmax");
  if (get_options("isotropic").size()) {
    for (size_t i = 0; i != dirs_azel.size(); ++i)
      lmax.push_back (0);
    max_lmax = 0;
  } else if (opt.size()) {
    lmax = parse_ints<uint32_t> (opt[0][0]);
    if (lmax.size() != dirs_azel.size())
      throw Exception ("Number of lmax\'s specified (" + str(lmax.size()) + ") does not match number of b-value shells (" + str(dirs_azel.size()) + ")");
    for (auto i : lmax) {
      if (i%2)
        throw Exception ("Values specified for lmax must be even");
      max_lmax = std::max (max_lmax, i);
    }
    if ((*shells)[0].is_bzero() && lmax.front()) {
      WARN ("Non-zero lmax requested for " +
            ((*shells)[0].get_mean() ?
            "first shell (mean b=" + str((*shells)[0].get_mean()) + "), which MRtrix3 has classified as b=0;" :
            "b=0 shell;"));
      WARN ("  unless intended, this is likely to fail, as b=0 contains no orientation contrast");
    }
  } else {
    // Auto-fill lmax
    // Because the amp->SH transform doesn't need to be applied per voxel,
    //   lmax is effectively unconstrained. Therefore generate response at
    //   lmax=10 regardless of number of input volumes.
    // - UNLESS it's b=0, in which case force lmax=0
    for (size_t i = 0; i != dirs_azel.size(); ++i) {
      if (!i && shells && shells->smallest().is_bzero())
        lmax.push_back (0);
      else
        lmax.push_back (10);
    }
    max_lmax = (shells && shells->smallest().is_bzero() && lmax.size() == 1) ? 0 : 10;
  }

  auto image = header.get_image<float>();
  auto mask = Image<bool>::open (argument[1]);
  check_dimensions (image, mask, 0, 3);
  if (!(mask.ndim() == 3 || (mask.ndim() == 4 && mask.size(3) == 1)))
    throw Exception ("input mask must be a 3D image");
  auto dir_image = Image<float>::open (argument[2]);
  if (dir_image.ndim() < 4 || dir_image.size(3) < 3)
    throw Exception ("input direction image \"" + std::string (argument[2]) + "\" does not have expected dimensions");
  check_dimensions (image, dir_image, 0, 3);

  size_t num_voxels = 0;
  for (auto l = Loop (mask, 0, 3) (mask); l; ++l) {
    if (mask.value())
      ++num_voxels;
  }
  if (!num_voxels)
    throw Exception ("input mask does not contain any voxels");

  const bool use_ols = get_options ("noconstraint").size();

  CONSOLE (std::string("estimating response function using ") +
      ( use_ols ? "ordinary" : "constrained" ) +
      " least-squares from " + str(num_voxels) + " voxels");




  Eigen::MatrixXd responses (dirs_azel.size(), Math::ZSH::NforL (max_lmax));

  for (size_t shell_index = 0; shell_index != dirs_azel.size(); ++shell_index) {

    // check the ZSH -> amplitude transform upfront:
    {
      auto transform = Math::ZSH::init_amp_transform<default_type> (dirs_azel[shell_index].col(1), lmax[shell_index]);
      if (!transform.allFinite()) {
        Exception e ("Unable to construct A2SH transformation for shell b=" + str(int(std::round((*shells)[shell_index].get_mean()))) + ";");
        e.push_back ("  lmax (" + str(lmax[shell_index]) + ") may be too large for this shell");
        if (!shell_index && (*shells)[0].is_bzero())
          e.push_back ("  (this appears to be a b=0 shell, and therefore lmax should be set to 0 for this shell)");
        throw e;
      }
    }


    auto dirs_cartesian = Math::Sphere::spherical2cartesian (dirs_azel[shell_index]);

    Accumulator::Shared shared (lmax[shell_index], volumes[shell_index], dirs_cartesian);
    ThreadedLoop(image, 0, 3).run (Accumulator (shared), image, dir_image, mask);

    Eigen::VectorXd rf;
    // Is this anything other than an isotropic response?

    if (!lmax[shell_index] || use_ols) {

      rf = shared.M.llt().solve (shared.b);

    } else {

      // Generate the constraint matrix
      // We are going to both constrain the amplitudes to be non-negative, and constrain the derivatives to be non-negative
      const size_t num_angles_constraint = 90;
      Eigen::VectorXd els (num_angles_constraint+1);
      for (size_t i = 0; i <= num_angles_constraint; ++i)
        els[i] = default_type(i) * Math::pi / 180.0;
      auto amp_transform   = Math::ZSH::init_amp_transform  <default_type> (els, lmax[shell_index]);
      auto deriv_transform = Math::ZSH::init_deriv_transform<default_type> (els, lmax[shell_index]);

      Eigen::MatrixXd constraints (amp_transform.rows() + deriv_transform.rows(), amp_transform.cols());
      constraints.block (0, 0, amp_transform.rows(), amp_transform.cols()) = amp_transform;
      constraints.block (amp_transform.rows(), 0, deriv_transform.rows(), deriv_transform.cols()) = deriv_transform;

      // Initialise the problem solver
      auto problem = Math::ICLS::Problem<default_type> (shared.M, constraints, Eigen::VectorXd(), 0, 1e-10, 1e-10, 0, 0.0, true);
      auto solver  = Math::ICLS::Solver <default_type> (problem);

      // Estimate the solution
      const size_t niter = solver (rf, shared.b);
      INFO ("constrained least-squares solver completed in " + str(niter) + " iterations");

    }

    CONSOLE ("  b=" + str((*shells)[shell_index].get_mean(), 4) + ": [" + str(rf.transpose().cast<float>()) + "]");

    rf.conservativeResizeLike (Eigen::VectorXd::Zero (Math::ZSH::NforL (max_lmax)));
    responses.row(shell_index) = rf;
  }

  KeyValues keyvals;
  if (shells) {
    std::string line = str<int>((*shells)[0].get_mean());
    for (size_t i = 1; i != (*shells).count(); ++i)
      line += "," + str<int>((*shells)[i].get_mean());
    keyvals["Shells"] = line;
  }
  save_matrix (responses, argument[3], keyvals);
}