1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include <Eigen/Dense>
#include "command.h"
#include "header.h"
#include "image.h"
#include "image_helpers.h"
#include "types.h"
#include "dwi/gradient.h"
#include "dwi/shells.h"
#include "math/constrained_least_squares.h"
#include "math/rng.h"
#include "math/sphere.h"
#include "math/SH.h"
#include "math/ZSH.h"
using namespace MR;
using namespace App;
void usage ()
{
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Estimate response function coefficients based on the DWI signal in single-fibre voxels";
DESCRIPTION
+ "This command uses the image data from all selected single-fibre voxels concurrently, "
"rather than simply averaging their individual spherical harmonic coefficients. It also "
"ensures that the response function is non-negative, and monotonic (i.e. its amplitude "
"must increase from the fibre direction out to the orthogonal plane)."
+ "If multi-shell data are provided, and one or more b-value shells are not explicitly "
"requested, the command will generate a response function for every b-value shell "
"(including b=0 if present).";
ARGUMENTS
+ Argument ("amps", "the amplitudes image").type_image_in()
+ Argument ("mask", "the mask containing the voxels from which to estimate the response function").type_image_in()
+ Argument ("directions", "a 4D image containing the estimated fibre directions").type_image_in()
+ Argument ("response", "the output zonal spherical harmonic coefficients").type_file_out();
OPTIONS
+ Option ("isotropic", "estimate an isotropic response function (lmax=0 for all shells)")
+ Option ("noconstraint", "disable the non-negativity and monotonicity constraints")
+ Option ("directions", "provide an external text file containing the directions along which the amplitudes are sampled")
+ Argument("path").type_file_in()
+ DWI::ShellsOption
+ Option ("lmax", "specify the maximum harmonic degree of the response function to estimate "
"(can be a comma-separated list for multi-shell data)")
+ Argument ("values").type_sequence_int();
REFERENCES
+ "Smith, R. E.; Dhollander, T. & Connelly, A. " // Internal
"Constrained linear least squares estimation of anisotropic response function for spherical deconvolution. "
"ISMRM Workshop on Breaking the Barriers of Diffusion MRI, 23.";
}
Eigen::Matrix<default_type, 3, 3> gen_rotation_matrix (const Eigen::Vector3d& dir)
{
static Math::RNG::Normal<default_type> rng;
// Generates a matrix that will rotate a unit vector into a new frame of reference,
// where the peak direction of the FOD is aligned in Z (3rd dimension)
// Previously this was done using the tensor eigenvectors
// Here the other two axes are determined at random (but both are orthogonal to the FOD peak direction)
Eigen::Matrix<default_type, 3, 3> R;
R (2, 0) = dir[0]; R (2, 1) = dir[1]; R (2, 2) = dir[2];
Eigen::Vector3d vec2 (rng(), rng(), rng());
vec2 = dir.cross (vec2);
vec2.normalize();
R (0, 0) = vec2[0]; R (0, 1) = vec2[1]; R (0, 2) = vec2[2];
Eigen::Vector3d vec3 = dir.cross (vec2);
vec3.normalize();
R (1, 0) = vec3[0]; R (1, 1) = vec3[1]; R (1, 2) = vec3[2];
return R;
}
vector<size_t> all_volumes (const size_t num)
{
vector<size_t> result (num);
for (size_t i = 0; i != num; ++i)
result[i] = i;
return result;
}
class Accumulator { MEMALIGN(Accumulator)
public:
class Shared { MEMALIGN(Shared)
public:
Shared (int lmax, const vector<size_t>& volumes, const Eigen::MatrixXd& dirs) :
lmax (lmax),
dirs (dirs),
volumes (volumes),
M (Eigen::MatrixXd::Zero (Math::ZSH::NforL (lmax), Math::ZSH::NforL (lmax))),
b (Eigen::VectorXd::Zero (M.rows())),
count (0) { }
const int lmax;
const Eigen::MatrixXd& dirs;
const vector<size_t>& volumes;
Eigen::MatrixXd M;
Eigen::VectorXd b;
size_t count;
};
Accumulator (Shared& shared) :
S (shared),
amplitudes (S.volumes.size()),
b (S.b),
M (S.M),
count (0),
rotated_dirs_cartesian (S.dirs.rows(), 3) { }
~Accumulator ()
{
// accumulate results from all threads:
S.M += M;
S.b += b;
S.count += count;
}
void operator() (Image<float>& amp_image, Image<float>& dir_image, Image<bool>& mask)
{
if (mask.value()) {
++count;
// Grab the fibre direction
Eigen::Vector3d fibre_dir;
for (dir_image.index(3) = 0; dir_image.index(3) != 3; ++dir_image.index(3))
fibre_dir[dir_image.index(3)] = dir_image.value();
fibre_dir.normalize();
// Rotate the directions into a new reference frame,
// where the Z axis is defined by the specified direction
auto R = gen_rotation_matrix (fibre_dir);
rotated_dirs_cartesian.transpose() = R * S.dirs.transpose();
// Convert directions from Euclidean space to azimuth/elevation pairs
Eigen::MatrixXd rotated_dirs_azel = Math::Sphere::cartesian2spherical (rotated_dirs_cartesian);
// Constrain elevations to between 0 and pi/2
for (ssize_t i = 0; i != rotated_dirs_azel.rows(); ++i) {
if (rotated_dirs_azel (i, 1) > Math::pi_2) {
if (rotated_dirs_azel (i, 0) > Math::pi)
rotated_dirs_azel (i, 0) -= Math::pi;
else
rotated_dirs_azel (i, 0) += Math::pi;
rotated_dirs_azel (i, 1) = Math::pi - rotated_dirs_azel (i, 1);
}
}
// Generate the ZSH -> amplitude transform
transform = Math::ZSH::init_amp_transform<default_type> (rotated_dirs_azel.col(1), S.lmax);
// Grab the image data
for (size_t i = 0; i != S.volumes.size(); ++i) {
amp_image.index(3) = S.volumes[i];
amplitudes[i] = amp_image.value();
}
// accumulate results:
b += transform.transpose() * amplitudes;
M.selfadjointView<Eigen::Lower>().rankUpdate (transform.transpose());
}
}
protected:
Shared& S;
Eigen::VectorXd amplitudes, b;
Eigen::MatrixXd M, transform;
size_t count;
Eigen::Matrix<default_type, Eigen::Dynamic, 3> rotated_dirs_cartesian;
};
void run ()
{
// Get directions from either selecting a b-value shell, or the header, or external file
auto header = Header::open (argument[0]);
// May be dealing with multiple shells
vector<Eigen::MatrixXd> dirs_azel;
vector<vector<size_t>> volumes;
std::unique_ptr<DWI::Shells> shells;
auto opt = get_options ("directions");
if (opt.size()) {
dirs_azel.push_back (load_matrix (opt[0][0]));
volumes.push_back (all_volumes (dirs_azel.size()));
} else {
auto hit = header.keyval().find ("directions");
if (hit != header.keyval().end()) {
vector<default_type> dir_vector;
for (auto line : split_lines (hit->second)) {
auto v = parse_floats (line);
dir_vector.insert (dir_vector.end(), v.begin(), v.end());
}
Eigen::MatrixXd directions (dir_vector.size() / 2, 2);
for (size_t i = 0; i < dir_vector.size(); i += 2) {
directions (i/2, 0) = dir_vector[i];
directions (i/2, 1) = dir_vector[i+1];
}
dirs_azel.push_back (std::move (directions));
volumes.push_back (all_volumes (dirs_azel.size()));
} else {
auto grad = DWI::get_DW_scheme (header);
shells.reset (new DWI::Shells (grad));
shells->select_shells (false, false, false);
for (size_t i = 0; i != shells->count(); ++i) {
volumes.push_back ((*shells)[i].get_volumes());
dirs_azel.push_back (DWI::gen_direction_matrix (grad, volumes.back()));
}
}
}
vector<uint32_t> lmax;
uint32_t max_lmax = 0;
opt = get_options ("lmax");
if (get_options("isotropic").size()) {
for (size_t i = 0; i != dirs_azel.size(); ++i)
lmax.push_back (0);
max_lmax = 0;
} else if (opt.size()) {
lmax = parse_ints<uint32_t> (opt[0][0]);
if (lmax.size() != dirs_azel.size())
throw Exception ("Number of lmax\'s specified (" + str(lmax.size()) + ") does not match number of b-value shells (" + str(dirs_azel.size()) + ")");
for (auto i : lmax) {
if (i%2)
throw Exception ("Values specified for lmax must be even");
max_lmax = std::max (max_lmax, i);
}
if ((*shells)[0].is_bzero() && lmax.front()) {
WARN ("Non-zero lmax requested for " +
((*shells)[0].get_mean() ?
"first shell (mean b=" + str((*shells)[0].get_mean()) + "), which MRtrix3 has classified as b=0;" :
"b=0 shell;"));
WARN (" unless intended, this is likely to fail, as b=0 contains no orientation contrast");
}
} else {
// Auto-fill lmax
// Because the amp->SH transform doesn't need to be applied per voxel,
// lmax is effectively unconstrained. Therefore generate response at
// lmax=10 regardless of number of input volumes.
// - UNLESS it's b=0, in which case force lmax=0
for (size_t i = 0; i != dirs_azel.size(); ++i) {
if (!i && shells && shells->smallest().is_bzero())
lmax.push_back (0);
else
lmax.push_back (10);
}
max_lmax = (shells && shells->smallest().is_bzero() && lmax.size() == 1) ? 0 : 10;
}
auto image = header.get_image<float>();
auto mask = Image<bool>::open (argument[1]);
check_dimensions (image, mask, 0, 3);
if (!(mask.ndim() == 3 || (mask.ndim() == 4 && mask.size(3) == 1)))
throw Exception ("input mask must be a 3D image");
auto dir_image = Image<float>::open (argument[2]);
if (dir_image.ndim() < 4 || dir_image.size(3) < 3)
throw Exception ("input direction image \"" + std::string (argument[2]) + "\" does not have expected dimensions");
check_dimensions (image, dir_image, 0, 3);
size_t num_voxels = 0;
for (auto l = Loop (mask, 0, 3) (mask); l; ++l) {
if (mask.value())
++num_voxels;
}
if (!num_voxels)
throw Exception ("input mask does not contain any voxels");
const bool use_ols = get_options ("noconstraint").size();
CONSOLE (std::string("estimating response function using ") +
( use_ols ? "ordinary" : "constrained" ) +
" least-squares from " + str(num_voxels) + " voxels");
Eigen::MatrixXd responses (dirs_azel.size(), Math::ZSH::NforL (max_lmax));
for (size_t shell_index = 0; shell_index != dirs_azel.size(); ++shell_index) {
// check the ZSH -> amplitude transform upfront:
{
auto transform = Math::ZSH::init_amp_transform<default_type> (dirs_azel[shell_index].col(1), lmax[shell_index]);
if (!transform.allFinite()) {
Exception e ("Unable to construct A2SH transformation for shell b=" + str(int(std::round((*shells)[shell_index].get_mean()))) + ";");
e.push_back (" lmax (" + str(lmax[shell_index]) + ") may be too large for this shell");
if (!shell_index && (*shells)[0].is_bzero())
e.push_back (" (this appears to be a b=0 shell, and therefore lmax should be set to 0 for this shell)");
throw e;
}
}
auto dirs_cartesian = Math::Sphere::spherical2cartesian (dirs_azel[shell_index]);
Accumulator::Shared shared (lmax[shell_index], volumes[shell_index], dirs_cartesian);
ThreadedLoop(image, 0, 3).run (Accumulator (shared), image, dir_image, mask);
Eigen::VectorXd rf;
// Is this anything other than an isotropic response?
if (!lmax[shell_index] || use_ols) {
rf = shared.M.llt().solve (shared.b);
} else {
// Generate the constraint matrix
// We are going to both constrain the amplitudes to be non-negative, and constrain the derivatives to be non-negative
const size_t num_angles_constraint = 90;
Eigen::VectorXd els (num_angles_constraint+1);
for (size_t i = 0; i <= num_angles_constraint; ++i)
els[i] = default_type(i) * Math::pi / 180.0;
auto amp_transform = Math::ZSH::init_amp_transform <default_type> (els, lmax[shell_index]);
auto deriv_transform = Math::ZSH::init_deriv_transform<default_type> (els, lmax[shell_index]);
Eigen::MatrixXd constraints (amp_transform.rows() + deriv_transform.rows(), amp_transform.cols());
constraints.block (0, 0, amp_transform.rows(), amp_transform.cols()) = amp_transform;
constraints.block (amp_transform.rows(), 0, deriv_transform.rows(), deriv_transform.cols()) = deriv_transform;
// Initialise the problem solver
auto problem = Math::ICLS::Problem<default_type> (shared.M, constraints, Eigen::VectorXd(), 0, 1e-10, 1e-10, 0, 0.0, true);
auto solver = Math::ICLS::Solver <default_type> (problem);
// Estimate the solution
const size_t niter = solver (rf, shared.b);
INFO ("constrained least-squares solver completed in " + str(niter) + " iterations");
}
CONSOLE (" b=" + str((*shells)[shell_index].get_mean(), 4) + ": [" + str(rf.transpose().cast<float>()) + "]");
rf.conservativeResizeLike (Eigen::VectorXd::Zero (Math::ZSH::NforL (max_lmax)));
responses.row(shell_index) = rf;
}
KeyValues keyvals;
if (shells) {
std::string line = str<int>((*shells)[0].get_mean());
for (size_t i = 1; i != (*shells).count(); ++i)
line += "," + str<int>((*shells)[i].get_mean());
keyvals["Shells"] = line;
}
save_matrix (responses, argument[3], keyvals);
}
|