1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "progressbar.h"
#include "math/rng.h"
#include "thread.h"
#include "math/gradient_descent.h"
#include "math/check_gradient.h"
#include "dwi/directions/file.h"
#define DEFAULT_POWER 1
#define DEFAULT_NITER 10000
#define DEFAULT_RESTARTS 10
using namespace MR;
using namespace App;
void usage ()
{
AUTHOR = "J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Generate a set of uniformly distributed directions using a bipolar electrostatic repulsion model";
DESCRIPTION
+ "Directions are distributed by analogy to an electrostatic repulsion system, with each direction "
"corresponding to a single electrostatic charge (for -unipolar), or a pair of diametrically opposed charges "
"(for the default bipolar case). The energy of the system is determined based on the Coulomb repulsion, "
"which assumes the form 1/r^power, where r is the distance between any pair of charges, and p is the power "
"assumed for the repulsion law (default: 1). The minimum energy state is obtained by gradient descent.";
REFERENCES
+ "Jones, D.; Horsfield, M. & Simmons, A. "
"Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. "
"Magnetic Resonance in Medicine, 1999, 42: 515-525"
+ "Papadakis, N. G.; Murrills, C. D.; Hall, L. D.; Huang, C. L.-H. & Adrian Carpenter, T. "
"Minimal gradient encoding for robust estimation of diffusion anisotropy. "
"Magnetic Resonance Imaging, 2000, 18: 671-679";
ARGUMENTS
+ Argument ("ndir", "the number of directions to generate.").type_integer (6, std::numeric_limits<int>::max())
+ Argument ("dirs", "the text file to write the directions to, as [ az el ] pairs.").type_file_out();
OPTIONS
+ Option ("power", "specify exponent to use for repulsion power law (default: " + str(DEFAULT_POWER) + "). This must be a power of 2 (i.e. 1, 2, 4, 8, 16, ...).")
+ Argument ("exp").type_integer (1, std::numeric_limits<int>::max())
+ Option ("niter", "specify the maximum number of iterations to perform (default: " + str(DEFAULT_NITER) + ").")
+ Argument ("num").type_integer (1, std::numeric_limits<int>::max())
+ Option ("restarts", "specify the number of restarts to perform (default: " + str(DEFAULT_RESTARTS) + ").")
+ Argument ("num").type_integer (1, std::numeric_limits<int>::max())
+ Option ("unipolar", "optimise assuming a unipolar electrostatic repulsion model rather than the bipolar model normally assumed in DWI")
+ Option ("cartesian", "Output the directions in Cartesian coordinates [x y z] instead of [az el].");
}
// constrain directions to remain unit length:
class ProjectedUpdate { MEMALIGN(ProjectedUpdate)
public:
bool operator() (
Eigen::VectorXd& newx,
const Eigen::VectorXd& x,
const Eigen::VectorXd& g,
double step_size) {
newx.noalias() = x - step_size * g;
for (ssize_t n = 0; n < newx.size(); n += 3)
newx.segment (n,3).normalize();
return newx != x;
}
};
class Energy { MEMALIGN(Energy)
public:
Energy (ProgressBar& progress) :
progress (progress),
ndirs (to<int> (argument[0])),
bipolar (!(get_options ("unipolar").size())),
power (0),
directions (3 * ndirs) { }
// Non-optimised compilation can't handle recursive inline functions
#ifdef __OPTIMIZE__
FORCE_INLINE
#endif
double fast_pow (double x, int p) {
return p == 1 ? x : fast_pow (x*x, p/2);
}
using value_type = double;
size_t size () const { return 3 * ndirs; }
// set x to original directions provided in constructor.
// The idea is to save the directions from one run to initialise next run
// at higher power.
double init (Eigen::VectorXd& x)
{
Math::RNG::Normal<double> rng;
for (size_t n = 0; n < ndirs; ++n) {
auto d = x.segment (3*n,3);
d[0] = rng();
d[1] = rng();
d[2] = rng();
d.normalize();
}
return 0.01;
}
// function executed by optimiser at each iteration:
double operator() (const Eigen::VectorXd& x, Eigen::VectorXd& g) {
double E = 0.0;
g.setZero();
for (size_t i = 0; i < ndirs-1; ++i) {
auto d1 = x.segment (3*i, 3);
auto g1 = g.segment (3*i, 3);
for (size_t j = i+1; j < ndirs; ++j) {
auto d2 = x.segment (3*j, 3);
auto g2 = g.segment (3*j, 3);
Eigen::Vector3d r = d1-d2;
double _1_r2 = 1.0 / r.squaredNorm();
double _1_r = std::sqrt (_1_r2);
double e = fast_pow (_1_r, power);
E += e;
g1 -= (power * e * _1_r2) * r;
g2 += (power * e * _1_r2) * r;
if (bipolar) {
r = d1+d2;
_1_r2 = 1.0 / r.squaredNorm();
_1_r = std::sqrt (_1_r2);
e = fast_pow (_1_r, power);
E += e;
g1 -= (power * e * _1_r2) * r;
g2 -= (power * e * _1_r2) * r;
}
}
}
// constrain gradients to lie tangent to unit sphere:
for (size_t n = 0; n < ndirs; ++n)
g.segment(3*n,3) -= x.segment(3*n,3).dot (g.segment(3*n,3)) * x.segment(3*n,3);
return E;
}
// function executed per thread:
void execute ()
{
size_t this_start = 0;
while ((this_start = current_start++) < restarts) {
INFO ("launching start " + str (this_start));
double E = 0.0;
for (power = 1; power <= target_power; power *= 2) {
Math::GradientDescent<Energy,ProjectedUpdate> optim (*this, ProjectedUpdate());
INFO ("start " + str(this_start) + ": setting power = " + str (power));
optim.init();
size_t iter = 0;
for (; iter < niter; iter++) {
if (!optim.iterate())
break;
DEBUG ("start " + str(this_start) + ": [ " + str (iter) + " ] (pow = " + str (power) + ") E = " + str (optim.value(), 8)
+ ", grad = " + str (optim.gradient_norm(), 8));
std::lock_guard<std::mutex> lock (mutex);
++progress;
}
directions = optim.state();
E = optim.value();
}
std::lock_guard<std::mutex> lock (mutex);
if (E < best_E) {
best_E = E;
best_directions = directions;
}
}
}
static size_t restarts;
static int target_power;
static size_t niter;
static double best_E;
static Eigen::VectorXd best_directions;
protected:
ProgressBar& progress;
size_t ndirs;
bool bipolar;
int power;
Eigen::VectorXd directions;
double E;
static std::mutex mutex;
static std::atomic<size_t> current_start;
};
size_t Energy::restarts (DEFAULT_RESTARTS);
int Energy::target_power (DEFAULT_POWER);
size_t Energy::niter (DEFAULT_NITER);
std::mutex Energy::mutex;
std::atomic<size_t> Energy::current_start (0);
double Energy::best_E = std::numeric_limits<double>::infinity();
Eigen::VectorXd Energy::best_directions;
void run ()
{
Energy::restarts = get_option_value ("restarts", DEFAULT_RESTARTS);
Energy::target_power = get_option_value ("power", DEFAULT_POWER);
Energy::niter = get_option_value ("niter", DEFAULT_NITER);
{
ProgressBar progress ("Optimising directions up to power " + str(Energy::target_power) + " (" + str(Energy::restarts) + " restarts)");
Energy energy_functor (progress);
auto threads = Thread::run (Thread::multi (energy_functor), "energy function");
}
CONSOLE ("final energy = " + str(Energy::best_E));
size_t ndirs = Energy::best_directions.size()/3;
Eigen::MatrixXd directions_matrix (ndirs, 3);
for (size_t n = 0; n < ndirs; ++n)
directions_matrix.row (n) = Energy::best_directions.segment (3*n, 3);
DWI::Directions::save (directions_matrix, argument[1], get_options ("cartesian").size());
}
|