File: dirorder.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (152 lines) | stat: -rw-r--r-- 4,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include "command.h"
#include "progressbar.h"
#include "math/rng.h"
#include "math/SH.h"
#include "dwi/gradient.h"
#include "dwi/directions/file.h"

#include <random>
#include <functional>

using namespace MR;
using namespace App;

void usage ()
{
  AUTHOR = "J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Reorder a set of directions to ensure near-uniformity upon truncation";

  DESCRIPTION
  + "The intent of this command is to reorder a set of gradient directions such that "
    "if a scan is terminated prematurely, at any point, the acquired directions will "
    "still be close to optimally distributed on the half-sphere.";

  ARGUMENTS
    + Argument ("input", "the input directions file").type_file_in()
    + Argument ("output", "the output directions file").type_file_out();

  OPTIONS
    + Option ("cartesian", "Output the directions in Cartesian coordinates [x y z] instead of [az el].");
}



using value_type = double;



vector<size_t> optimise (const Eigen::MatrixXd& directions, const size_t first_volume)
{
  vector<size_t> indices (1, first_volume);
  vector<size_t> remaining;
  for (size_t n = 0; n < size_t(directions.rows()); ++n)
    if (n != indices[0])
      remaining.push_back (n);

  while (remaining.size()) {
    ssize_t best = 0;
    value_type best_E = std::numeric_limits<value_type>::max();

    for (size_t n = 0; n < remaining.size(); ++n) {
      value_type E = 0.0;
      ssize_t a = remaining[n];
      for (size_t i = 0; i < indices.size(); ++i) {
        ssize_t b = indices[i];
        E += 1.0 / (directions.row(a) - directions.row(b)).norm();
        E += 1.0 / (directions.row(a) + directions.row(b)).norm();
      }
      if (E < best_E) {
        best_E = E;
        best = n;
      }
    }

    indices.push_back (remaining[best]);
    remaining.erase (remaining.begin()+best);
  }

  return indices;
}




value_type calc_cost (const Eigen::MatrixXd& directions, const vector<size_t>& order)
{
  const size_t start = Math::SH::NforL (2);
  if (size_t(directions.rows()) <= start)
    return value_type(0);
  Eigen::MatrixXd subset (start, 3);
  for (size_t i = 0; i != start; ++i)
    subset.row(i) = directions.row(order[i]);
  value_type cost = value_type(0);
  for (size_t N = start+1; N < size_t(directions.rows()); ++N) {
    // Don't include condition numbers where precisely the number of coefficients
    //   for that spherical harmonic degree are included, as these tend to
    //   be outliers
    const size_t lmax = Math::SH::LforN (N-1);
    subset.conservativeResize (N, 3);
    subset.row(N-1) = directions.row(order[N-1]);
    const value_type cond = DWI::condition_number_for_lmax (subset, lmax);
    cost += cond;
  }
  return cost;
}




void run ()
{
  auto directions = DWI::Directions::load_cartesian (argument[0]);

  size_t last_candidate_first_volume = directions.rows();
  if (size_t(directions.rows()) <= Math::SH::NforL (2)) {
    WARN ("Very few directions in input ("
          + str(directions.rows())
          + "); selection of first direction cannot be optimised"
          + " (first direction in input will be first direction in output)");
    last_candidate_first_volume = 1;
  }

  value_type min_cost = std::numeric_limits<value_type>::infinity();
  vector<size_t> best_order;
  ProgressBar progress ("Determining best reordering", directions.rows());
  for (size_t first_volume = 0; first_volume != last_candidate_first_volume; ++first_volume) {
    const vector<size_t> order = optimise (directions, first_volume);
    const value_type cost = calc_cost (directions, order);
    if (cost < min_cost) {
      min_cost = cost;
      best_order = order;
    }
    ++progress;
  }

  decltype(directions) output (directions.rows(), 3);
  for (ssize_t n = 0; n < directions.rows(); ++n)
    output.row(n) = directions.row (best_order[n]);

  DWI::Directions::save (output, argument[1], get_options("cartesian").size());
}