File: dwi2fod.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (333 lines) | stat: -rw-r--r-- 11,236 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include "command.h"
#include "header.h"
#include "image.h"
#include "algo/threaded_loop.h"
#include "dwi/gradient.h"
#include "dwi/shells.h"
#include "math/SH.h"
#include "metadata/phase_encoding.h"

#include "dwi/sdeconv/csd.h"
#include "dwi/sdeconv/msmt_csd.h"


using namespace MR;
using namespace App;


const char* const algorithms[] = { "csd", "msmt_csd", NULL };



OptionGroup CommonOptions = OptionGroup ("Options common to more than one algorithm")

    + Option ("directions",
              "specify the directions over which to apply the non-negativity constraint "
              "(by default, the built-in 300 direction set is used). These should be "
              "supplied as a text file containing [ az el ] pairs for the directions.")
      + Argument ("file").type_file_in()

    + Option ("lmax",
              "the maximum spherical harmonic order for the output FOD(s)."
              "For algorithms with multiple outputs, this should be "
              "provided as a comma-separated list of integers, one for "
              "each output image; for single-output algorithms, only "
              "a single integer should be provided. If omitted, the "
              "command will use the lmax of the corresponding response "
              "function (i.e based on its number of coefficients), "
              "up to a maximum of 8.")
      + Argument ("order").type_sequence_int()

    + Option ("mask",
              "only perform computation within the specified binary brain mask image.")
      + Argument ("image").type_image_in();

void usage ()
{
  AUTHOR = "J-Donald Tournier (jdtournier@gmail.com) and Ben Jeurissen (ben.jeurissen@uantwerpen.be)";

  SYNOPSIS = "Estimate fibre orientation distributions from diffusion data using spherical deconvolution";

  DESCRIPTION
    + Math::SH::encoding_description;

  EXAMPLES
    + Example ("Perform single-shell single-tissue CSD",
               "dwi2fod csd dwi.mif response_wm.txt wmfod.mif",
               "This algorithm is designed for single-shell data and only uses a single "
               "b-value. The response function text file provided should only contain a "
               "a single row, corresponding to the b-value used for CSD.")

    + Example ("Perform multi-shell multi-tissue CSD",
               "dwi2fod msmt_csd dwi.mif response_wm.txt wmfod.mif response_gm.txt gm.mif response_csf.txt csf.mif",
               "This example is the most common use case of multi-tissue CSD, estimating "
               "a white matter FOD, and grey matter and CSF compartments. This algorithm "
               "requires at least three unique b-values to estimate three tissue compartments. "
               "Each response function text file should have a number of rows equal to the "
               "number of b-values used. If only two unique b-values are available, it's also "
               "possible to estimate only two tissue compartments, e.g., white matter and CSF.");

  REFERENCES
    + "* If using csd algorithm:\n"
    "Tournier, J.-D.; Calamante, F. & Connelly, A. " // Internal
    "Robust determination of the fibre orientation distribution in diffusion MRI: "
    "Non-negativity constrained super-resolved spherical deconvolution. "
    "NeuroImage, 2007, 35, 1459-1472"

    + "* If using msmt_csd algorithm:\n"
    "Jeurissen, B; Tournier, J-D; Dhollander, T; Connelly, A & Sijbers, J. " // Internal
    "Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. "
    "NeuroImage, 2014, 103, 411-426"

    + "Tournier, J.-D.; Calamante, F., Gadian, D.G. & Connelly, A. " // Internal
    "Direct estimation of the fiber orientation density function from "
    "diffusion-weighted MRI data using spherical deconvolution. "
    "NeuroImage, 2004, 23, 1176-1185";

  ARGUMENTS
    + Argument ("algorithm", "the algorithm to use for FOD estimation. "
                             "(options are: " + join(algorithms, ",") + ")").type_choice (algorithms)
    + Argument ("dwi", "the input diffusion-weighted image").type_image_in()
    + Argument ("response odf", "pairs of input tissue response and output ODF images").allow_multiple();

  OPTIONS
    + DWI::GradImportOptions()
    + DWI::ShellsOption
    + CommonOptions
    + DWI::SDeconv::CSD_options
    + DWI::SDeconv::MSMT_CSD_options
    + Stride::Options;
}



class CSD_Processor { MEMALIGN(CSD_Processor)
  public:
    CSD_Processor (const DWI::SDeconv::CSD::Shared& shared, Image<bool>& mask) :
      sdeconv (shared),
      data (shared.dwis.size()),
      mask (mask) { }


    void operator () (Image<float>& dwi, Image<float>& fod) {
      if (!load_data (dwi)) {
        for (auto l = Loop (3) (fod); l; ++l)
          fod.value() = 0.0;
        return;
      }

      sdeconv.set (data);

      size_t n;
      for (n = 0; n < sdeconv.shared.niter; n++)
        if (sdeconv.iterate())
          break;

      if (sdeconv.shared.niter && n >= sdeconv.shared.niter)
        INFO ("voxel [ " + str (dwi.index(0)) + " " + str (dwi.index(1)) + " " + str (dwi.index(2)) +
            " ] did not reach full convergence");

      fod.row(3) = sdeconv.FOD();
    }


  private:
    DWI::SDeconv::CSD sdeconv;
    Eigen::VectorXd data;
    Image<bool> mask;


    bool load_data (Image<float>& dwi) {
      if (mask.valid()) {
        assign_pos_of (dwi, 0, 3).to (mask);
        if (!mask.value())
          return false;
      }

      for (size_t n = 0; n < sdeconv.shared.dwis.size(); n++) {
        dwi.index(3) = sdeconv.shared.dwis[n];
        data[n] = dwi.value();
        if (!std::isfinite (data[n]))
          return false;
        if (data[n] < 0.0)
          data[n] = 0.0;
      }

      return true;
    }


};




class MSMT_Processor { MEMALIGN (MSMT_Processor)
  public:
    MSMT_Processor (const DWI::SDeconv::MSMT_CSD::Shared& shared, Image<bool>& mask_image,
      vector< Image<float> > odf_images, Image<float> dwi_modelled = Image<float>()) :
        sdeconv (shared),
        mask_image (mask_image),
        odf_images (odf_images),
        modelled_image (dwi_modelled),
        dwi_data (shared.grad.rows()),
        output_data (shared.problem.H.cols()) { }


    void operator() (Image<float>& dwi_image)
    {
      if (mask_image.valid()) {
        assign_pos_of (dwi_image, 0, 3).to (mask_image);
        if (!mask_image.value())
          return;
      }

      dwi_data = dwi_image.row(3);

      sdeconv (dwi_data, output_data);
      if (sdeconv.niter >= sdeconv.shared.problem.max_niter) {
        INFO ("voxel [ " + str (dwi_image.index(0)) + " " + str (dwi_image.index(1)) + " " + str (dwi_image.index(2)) +
            " ] did not reach full convergence");
      }

      size_t j = 0;
      for (size_t i = 0; i < odf_images.size(); ++i) {
        assign_pos_of (dwi_image, 0, 3).to (odf_images[i]);
        for (auto l = Loop(3)(odf_images[i]); l; ++l)
          odf_images[i].value() = output_data[j++];
      }

      if (modelled_image.valid()) {
        assign_pos_of (dwi_image, 0, 3).to (modelled_image);
        dwi_data = sdeconv.shared.problem.H * output_data;
        modelled_image.row(3) = dwi_data;
      }
    }


  private:
    DWI::SDeconv::MSMT_CSD sdeconv;
    Image<bool> mask_image;
    vector< Image<float> > odf_images;
    Image<float> modelled_image;
    Eigen::VectorXd dwi_data;
    Eigen::VectorXd output_data;
};







void run ()
{

  auto header_in = Header::open (argument[1]);
  Header header_out (header_in);
  header_out.ndim() = 4;
  header_out.datatype() = DataType::Float32;
  header_out.datatype().set_byte_order_native();
  Stride::set_from_command_line (header_out, Stride::contiguous_along_axis (3, header_in));

  auto mask = Image<bool>();
  auto opt = get_options ("mask");
  if (opt.size()) {
    mask = Header::open (opt[0][0]).get_image<bool>();
    check_dimensions (header_in, mask, 0, 3);
  }

  int algorithm = argument[0];
  if (algorithm == 0) {

    if (argument.size() != 4)
      throw Exception ("CSD algorithm expects a single input response function and single output FOD image");

    DWI::SDeconv::CSD::Shared shared (header_in);
    shared.parse_cmdline_options();
    try {
      shared.set_response (argument[2]);
    } catch (Exception& e) {
      throw Exception (e, "CSD algorithm expects second argument to be the input response function file");
    }

    shared.init();

    DWI::stash_DW_scheme (header_out, shared.grad);
    Metadata::PhaseEncoding::clear_scheme (header_out.keyval());

    header_out.size(3) = shared.nSH();
    auto fod = Image<float>::create (argument[3], header_out);

    CSD_Processor processor (shared, mask);
    auto dwi = header_in.get_image<float>().with_direct_io (3);
    ThreadedLoop ("performing constrained spherical deconvolution", dwi, 0, 3)
        .run (processor, dwi, fod);

  } else if (algorithm == 1) {

    if (argument.size() % 2)
      throw Exception ("MSMT_CSD algorithm expects pairs of (input response function & output FOD image) to be provided");

    DWI::SDeconv::MSMT_CSD::Shared shared (header_in);
    shared.parse_cmdline_options();

    const size_t num_tissues = (argument.size()-2)/2;
    vector<std::string> response_paths;
    vector<std::string> odf_paths;
    for (size_t i = 0; i < num_tissues; ++i) {
      response_paths.push_back (argument[i*2+2]);
      odf_paths.push_back (argument[i*2+3]);
    }

    try {
      shared.set_responses (response_paths);
    } catch (Exception& e) {
      throw Exception (e, "MSMT_CSD algorithm expects the first file in each argument pair to be an input response function file");
    }

    shared.init();

    DWI::stash_DW_scheme (header_out, shared.grad);

    vector< Image<float> > odfs;
    for (size_t i = 0; i < num_tissues; ++i) {
      header_out.size (3) = Math::SH::NforL (shared.lmax[i]);
      odfs.push_back (Image<float> (Image<float>::create (odf_paths[i], header_out)));
    }

    Image<float> dwi_modelled;
    auto opt = get_options ("predicted_signal");
    if (opt.size())
      dwi_modelled = Image<float>::create (opt[0][0], header_in);

    MSMT_Processor processor (shared, mask, odfs, dwi_modelled);
    auto dwi = header_in.get_image<float>().with_direct_io (3);
    ThreadedLoop ("performing MSMT CSD ("
                  + str(shared.num_shells()) + " shell" + (shared.num_shells() > 1 ? "s" : "") + ", "
                  + str(num_tissues) + " tissue" + (num_tissues > 1 ? "s" : "") + ")",
                  dwi, 0, 3)
        .run (processor, dwi);

  } else {
    assert (0);
  }

}