1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "progressbar.h"
#include "image.h"
#include "algo/threaded_copy.h"
#include "dwi/gradient.h"
#include "dwi/tensor.h"
#include "metadata/phase_encoding.h"
using namespace MR;
using namespace App;
using value_type = float;
#define DEFAULT_NITER 2
const char* const encoding_description[] = {
"The tensor coefficients are stored in the output image as follows:\n"
"volumes 0-5: D11, D22, D33, D12, D13, D23",
"If diffusion kurtosis is estimated using the -dkt option, these are stored as follows:\n"
"volumes 0-2: W1111, W2222, W3333\n"
"volumes 3-8: W1112, W1113, W1222, W1333, W2223, W2333\n"
"volumes 9-11: W1122, W1133, W2233\n"
"volumes 12-14: W1123, W1223, W1233",
nullptr
};
void usage ()
{
AUTHOR = "Ben Jeurissen (ben.jeurissen@uantwerpen.be)";
SYNOPSIS = "Diffusion (kurtosis) tensor estimation";
DESCRIPTION
+ "By default, the diffusion tensor (and optionally its kurtosis) is fitted to "
"the log-signal in two steps: firstly, using weighted least-squares (WLS) with "
"weights based on the empirical signal intensities; secondly, by further iterated weighted "
"least-squares (IWLS) with weights determined by the signal predictions from the "
"previous iteration (by default, 2 iterations will be performed). This behaviour can "
"be altered in two ways:"
+ "* The -ols option will cause the first fitting step to be performed using ordinary "
"least-squares (OLS); that is, all measurements contribute equally to the fit, instead of "
"the default behaviour of weighting based on the empirical signal intensities."
+ "* The -iter option controls the number of iterations of the IWLS prodedure. If this is "
"set to zero, then the output model parameters will be those resulting from the first "
"fitting step only: either WLS by default, or OLS if the -ols option is used in conjunction "
"with -iter 0."
+ encoding_description;
ARGUMENTS
+ Argument ("dwi", "the input dwi image.").type_image_in ()
+ Argument ("dt", "the output dt image.").type_image_out ();
OPTIONS
+ Option ("ols", "perform initial fit using an ordinary least-squares (OLS) fit (see Description).")
+ Option ("mask", "only perform computation within the specified binary brain mask image.")
+ Argument ("image").type_image_in()
+ Option ("b0", "the output b0 image.")
+ Argument ("image").type_image_out()
+ Option ("dkt", "the output dkt image.")
+ Argument ("image").type_image_out()
+ Option ("iter","number of iterative reweightings for IWLS algorithm (default: "
+ str(DEFAULT_NITER) + ") (see Description).")
+ Argument ("integer").type_integer (0, 10)
+ Option ("predicted_signal", "the predicted dwi image.")
+ Argument ("image").type_image_out()
+ DWI::GradImportOptions();
REFERENCES
+ "References based on fitting algorithm used:"
+ "* OLS, WLS:\n"
"Basser, P.J.; Mattiello, J.; LeBihan, D. "
"Estimation of the effective self-diffusion tensor from the NMR spin echo. "
"J Magn Reson B., 1994, 103, 247–254."
+ "* IWLS:\n"
"Veraart, J.; Sijbers, J.; Sunaert, S.; Leemans, A. & Jeurissen, B. " // Internal
"Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. "
"NeuroImage, 2013, 81, 335-346";
}
template <class MASKType, class B0Type, class DKTType, class PredictType>
class Processor { MEMALIGN(Processor)
public:
Processor (const Eigen::MatrixXd& b, const bool ols, const int iter,
const MASKType& mask_image, const B0Type& b0_image, const DKTType& dkt_image, const PredictType& predict_image) :
mask_image (mask_image),
b0_image (b0_image),
dkt_image (dkt_image),
predict_image (predict_image),
dwi(b.rows()),
p(b.cols()),
w(Eigen::VectorXd::Ones (b.rows())),
work(b.cols(),b.cols()),
llt(work.rows()),
b(b),
ols (ols),
maxit(iter) { }
template <class DWIType, class DTType>
void operator() (DWIType& dwi_image, DTType& dt_image)
{
if (mask_image.valid()) {
assign_pos_of (dwi_image, 0, 3).to (mask_image);
if (!mask_image.value())
return;
}
for (auto l = Loop (3) (dwi_image); l; ++l)
dwi[dwi_image.index(3)] = dwi_image.value();
double small_intensity = 1.0e-6 * dwi.maxCoeff();
for (int i = 0; i < dwi.rows(); i++) {
if (dwi[i] < small_intensity)
dwi[i] = small_intensity;
w[i] = ( ols ? 1.0 : dwi[i] );
dwi[i] = std::log (dwi[i]);
}
for (int it = 0; it <= maxit; it++) {
work.setZero();
work.selfadjointView<Eigen::Lower>().rankUpdate (b.transpose()*w.asDiagonal());
p = llt.compute (work.selfadjointView<Eigen::Lower>()).solve(b.transpose()*w.asDiagonal()*w.asDiagonal()*dwi);
if (it < maxit)
w = (b*p).array().exp();
}
for (auto l = Loop(3)(dt_image); l; ++l) {
dt_image.value() = p[dt_image.index(3)];
}
if (b0_image.valid()) {
assign_pos_of (dwi_image, 0, 3).to (b0_image);
b0_image.value() = exp(p[6]);
}
if (dkt_image.valid()) {
assign_pos_of (dwi_image, 0, 3).to (dkt_image);
double adc_sq = (p[0]+p[1]+p[2])*(p[0]+p[1]+p[2])/9.0;
for (auto l = Loop(3)(dkt_image); l; ++l) {
dkt_image.value() = p[dkt_image.index(3)+7]/adc_sq;
}
}
if (predict_image.valid()) {
assign_pos_of (dwi_image, 0, 3).to (predict_image);
dwi = (b*p).array().exp();
for (auto l = Loop(3)(predict_image); l; ++l) {
predict_image.value() = dwi[predict_image.index(3)];
}
}
}
private:
MASKType mask_image;
B0Type b0_image;
DKTType dkt_image;
PredictType predict_image;
Eigen::VectorXd dwi;
Eigen::VectorXd p;
Eigen::VectorXd w;
Eigen::MatrixXd work;
Eigen::LLT<Eigen::MatrixXd> llt;
const Eigen::MatrixXd& b;
const bool ols;
const int maxit;
};
template <class MASKType, class B0Type, class DKTType, class PredictType>
inline Processor<MASKType, B0Type, DKTType, PredictType> processor (const Eigen::MatrixXd& b, const bool ols, const int iter, const MASKType& mask_image, const B0Type& b0_image, const DKTType& dkt_image, const PredictType& predict_image) {
return { b, ols, iter, mask_image, b0_image, dkt_image, predict_image };
}
void run ()
{
auto header_in = Header::open (argument[0]);
auto grad = DWI::get_DW_scheme (header_in);
Image<bool> mask;
auto opt = get_options ("mask");
if (opt.size()) {
mask = Image<bool>::open (opt[0][0]);
check_dimensions (header_in, mask, 0, 3);
}
bool ols = get_options ("ols").size();
// depending on whether first (initialisation) loop should be considered an iteration
auto iter = get_option_value ("iter", DEFAULT_NITER);
Header header_out (header_in);
header_out.datatype() = DataType::Float32;
header_out.ndim() = 4;
Metadata::PhaseEncoding::clear_scheme (header_out.keyval());
Image<value_type> predict;
opt = get_options ("predicted_signal");
if (opt.size())
predict = Image<value_type>::create (opt[0][0], header_out);
DWI::stash_DW_scheme (header_out, grad);
header_out.size(3) = 6;
auto dt = Image<value_type>::create (argument[1], header_out);
Image<value_type> b0;
opt = get_options ("b0");
if (opt.size()) {
header_out.ndim() = 3;
b0 = Image<value_type>::create (opt[0][0], header_out);
}
Image<value_type> dkt;
opt = get_options ("dkt");
if (opt.size()) {
header_out.ndim() = 4;
header_out.size(3) = 15;
dkt = Image<value_type>::create (opt[0][0], header_out);
}
Eigen::MatrixXd b = -DWI::grad2bmatrix<double> (grad, dkt.valid());
auto dwi = header_in.get_image<value_type>();
ThreadedLoop("computing tensors", dwi, 0, 3).run (processor (b, ols, iter, mask, b0, dkt, predict), dwi, dt);
}
|