File: fixel2voxel.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (581 lines) | stat: -rw-r--r-- 18,961 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include "apply.h"
#include "command.h"
#include "progressbar.h"

#include "image.h"
#include "algo/loop.h"
#include "algo/threaded_loop.h"
#include "formats/mrtrix_utils.h"

#include "dwi/tractography/file.h"
#include "dwi/tractography/scalar_file.h"

#include "math/SH.h"

#include "fixel/helpers.h"
#include "fixel/keys.h"
#include "fixel/loop.h"
#include "fixel/types.h"

using namespace MR;
using namespace App;

using Fixel::index_type;


const char* operations[] = {
  "mean",
  "sum",
  "product",
  "min",
  "max",
  "absmax",
  "magmax",
  "count",
  "complexity",
  "sf",
  "dec_unit",
  "dec_scaled",
  "none",
  nullptr
};


void usage ()
{
  AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au) & David Raffelt (david.raffelt@florey.edu.au)";

  SYNOPSIS = "Convert a fixel-based sparse-data image into some form of scalar image";

  DESCRIPTION
  + "Fixel data can be reduced to voxel data in a number of ways:"
  + "- Some statistic computed across all fixel values within a voxel: mean, sum, product, min, max, absmax, magmax"
  + "- The number of fixels in each voxel: count"
  + "- Some measure of crossing-fibre organisation: complexity, sf ('single-fibre')"
  + "- A 4D directionally-encoded colour image: dec_unit, dec_scaled"
  + "- A 4D image containing all fixel data values in each voxel unmodified: none"

  + "The -weighted option deals with the case where there is some per-fixel metric of interest "
    "that you wish to collapse into a single scalar measure per voxel, but each fixel possesses "
    "a different volume, and you wish for those fixels with greater volume to have a greater "
    "influence on the calculation than fixels with lesser volume. For instance, when estimating "
    "a voxel-based measure of mean axon diameter from per-fixel mean axon diameters, a fixel's "
    "mean axon diameter should be weigthed by its relative volume within the voxel in the "
    "calculation of that voxel mean.";

  REFERENCES
    + "* Reference for 'complexity' operation:\n"
    "Riffert, T. W.; Schreiber, J.; Anwander, A. & Knosche, T. R. "
    "Beyond Fractional Anisotropy: Extraction of bundle-specific structural metrics from crossing fibre models. "
    "NeuroImage, 2014, 100, 176-191";

  ARGUMENTS
  + Argument ("fixel_in", "the input fixel data file").type_image_in ()
  + Argument ("operation", "the operation to apply, one of: " + join(operations, ", ") + ".").type_choice (operations)
  + Argument ("image_out", "the output scalar image.").type_image_out ();

  OPTIONS
  + Option ("number", "use only the largest N fixels in calculation of the voxel-wise statistic; "
                      "in the case of operation \"none\", output only the largest N fixels in each voxel.")
      + Argument ("N").type_integer(1)

  + Option ("fill", "for \"none\" operation, specify the value to fill when number of fixels is fewer than the maximum (default: 0.0)")
      + Argument ("value").type_float()

  + Option ("weighted", "weight the contribution of each fixel to the per-voxel result according to its volume.")
      + Argument ("fixel_in").type_image_in ();

}



using FixelIndexType = Image<index_type>;
using FixelDataType = Image<float>;



struct set_offset { NOMEMALIGN
  FORCE_INLINE set_offset (index_type offset) : offset (offset) { }
  template <class DataType>
    FORCE_INLINE void operator() (DataType& data) { data.index(0) = offset; }
  index_type offset;
};

struct inc_fixel { NOMEMALIGN
  template <class DataType>
    FORCE_INLINE void operator() (DataType& data) { ++data.index(0); }
};



struct LoopFixelsInVoxelWithMax { NOMEMALIGN
  const index_type num_fixels;
  const index_type max_fixels;
  const index_type offset;

  template <class... DataType>
  struct Run { NOMEMALIGN
    const index_type num_fixels;
    const index_type max_fixels;
    const index_type offset;
    index_type fixel_index;
    const std::tuple<DataType&...> data;
    FORCE_INLINE Run (const index_type num_fixels, const index_type max_fixels, const index_type offset, const std::tuple<DataType&...>& data) :
      num_fixels (num_fixels), max_fixels (max_fixels), offset (offset), fixel_index (0), data (data) {
      apply (set_offset (offset), data);
    }
    FORCE_INLINE operator bool() const { return max_fixels ? (fixel_index < max_fixels) : (fixel_index < num_fixels); }
    FORCE_INLINE void operator++() { if (!padding()) apply (inc_fixel (), data); ++fixel_index; }
    FORCE_INLINE void operator++(int) { operator++(); }
    FORCE_INLINE bool padding() const { return (max_fixels && fixel_index >= num_fixels); }
    FORCE_INLINE index_type count() const { return max_fixels ? max_fixels : num_fixels; }
  };

  template <class... DataType>
    FORCE_INLINE Run<DataType...> operator() (DataType&... data) const { return { num_fixels, max_fixels, offset, std::tie (data...) }; }

};



class Base
{ NOMEMALIGN
  public:
    Base (FixelDataType& data, const index_type max_fixels, const bool pad = false, const float pad_value = 0.0) :
        data (data),
        max_fixels (max_fixels),
        pad (pad),
        pad_value (pad_value) { }

  protected:
      FORCE_INLINE LoopFixelsInVoxelWithMax
      Loop (FixelIndexType& index) {
        index.index(3) = 0;
        const index_type num_fixels = index.value();
        index.index(3) = 1;
        const index_type offset = index.value();
        return { num_fixels, max_fixels, offset };
      }

    FixelDataType data;
    const index_type max_fixels;
    const bool pad;
    const float pad_value;

};


class Mean : protected Base
{ MEMALIGN (Mean)
  public:
    Mean (FixelDataType& data, const index_type max_fixels, FixelDataType& vol) :
        Base (data, max_fixels),
        vol (vol) {}

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      default_type sum = 0.0;
      default_type sum_volumes = 0.0;
      if (vol.valid()) {
        for (auto f = Base::Loop (index) (data, vol); f; ++f) {
          if (!f.padding()) {
            sum += data.value() * vol.value();
            sum_volumes += vol.value();
          }
        }
        out.value() = sum_volumes ? (sum / sum_volumes) : 0.0;
      } else {
        for (auto f = Base::Loop (index) (data); f; ++f) {
          if (!f.padding()) {
            sum += data.value();
            sum_volumes += 1.0;
          }
        }
        out.value() = sum_volumes ? (sum / sum_volumes) : 0.0;
      }
    }
  protected:
    FixelDataType vol;
};


class Sum : protected Base
{ MEMALIGN (Sum)
  public:
    Sum (FixelDataType& data, const index_type max_fixels, FixelDataType& vol) :
        Base (data, max_fixels),
        vol (vol) {}

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      if (vol.valid()) {
        for (auto f = Base::Loop (index) (data, vol); f; ++f) {
          if (!f.padding())
            out.value() += data.value() * vol.value();
        }
      } else {
        for (auto f = Base::Loop (index) (data); f; ++f) {
          if (!f.padding())
            out.value() += data.value();
        }
      }
    }
  protected:
    FixelDataType vol;
};


class Product : protected Base
{ MEMALIGN (Product)
  public:
    Product (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      index.index(3) = 0;
      index_type num_fixels = index.value();
      if (!num_fixels) {
        out.value() = 0.0;
        return;
      }
      index.index(3) = 1;
      index_type offset = index.value();
      data.index(0) = offset;
      out.value() = data.value();
      num_fixels = max_fixels ? std::min (max_fixels, num_fixels) : num_fixels;
      for (index_type f = 1; f != num_fixels; ++f) {
        data.index(0)++;
        out.value() *= data.value();
      }
    }
};


class Min : protected Base
{ MEMALIGN (Min)
  public:
    Min (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      default_type min = std::numeric_limits<default_type>::infinity();
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding() && data.value() < min)
          min = data.value();
      }
      out.value() = std::isfinite (min) ? min : NAN;
    }
};


class Max : protected Base
{ MEMALIGN (Max)
  public:
    Max (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      default_type max = -std::numeric_limits<default_type>::infinity();
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding() && data.value() > max)
          max = data.value();
      }
      out.value() = std::isfinite (max) ? max : NAN;
    }
};


class AbsMax : protected Base
{ MEMALIGN (AbsMax)
  public:
    AbsMax (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      default_type absmax = -std::numeric_limits<default_type>::infinity();
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding() && abs (float(data.value())) > absmax)
          absmax = abs (float(data.value()));
      }
      out.value() = std::isfinite (absmax) ? absmax : 0.0;
    }
};


class MagMax : protected Base
{ MEMALIGN (MagMax)
  public:
    MagMax (FixelDataType& data, const index_type num_fixels) :
        Base (data, num_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      default_type magmax = 0.0;
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding() && abs (float(data.value())) > abs (magmax))
          magmax = data.value();
      }
      out.value() = std::isfinite (magmax) ? magmax : 0.0;
    }
};


class Complexity : protected Base
{ MEMALIGN (Complexity)
  public:
    Complexity (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      index.index(3) = 0;
      index_type num_fixels = index.value();
      num_fixels = max_fixels ? std::min (num_fixels, max_fixels) : num_fixels;
      if (num_fixels <= 1) {
        out.value() = 0.0;
        return;
      }
      default_type max = 0.0;
      default_type sum = 0.0;
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding()) {
          max = std::max (max, default_type(data.value()));
          sum += data.value();
        }
      }
      out.value() = (default_type(num_fixels) / default_type(num_fixels-1.0)) * (1.0 - (max / sum));
    }
};


class SF : protected Base
{ MEMALIGN (SF)
  public:
    SF (FixelDataType& data, const index_type max_fixels) :
        Base (data, max_fixels) { }

    void operator() (Image<index_type>& index, FixelDataType& out)
    {
      default_type max = 0.0;
      default_type sum = 0.0;
      for (auto f = Base::Loop (index) (data); f; ++f) {
        if (!f.padding()) {
          max = std::max (max, default_type(data.value()));
          sum += data.value();
        }
      }
      out.value() = sum ? (max / sum) : 0.0;
    }
};


class DEC_unit : protected Base
{ MEMALIGN (DEC_unit)
  public:
    DEC_unit (FixelDataType& data, const index_type max_fixels, FixelDataType& vol, Image<float>& dir) :
        Base (data, max_fixels),
        vol (vol), dir (dir) {}

    void operator() (Image<index_type>& index, Image<float>& out)
    {
      Eigen::Vector3d sum_dec = {0.0, 0.0, 0.0};
      if (vol.valid()) {
        for (auto f = Base::Loop (index) (data, vol, dir); f; ++f) {
          if (!f.padding())
            sum_dec += Eigen::Vector3d (abs (dir.row(1)[0]), abs (dir.row(1)[1]), abs (dir.row(1)[2])) * data.value() * vol.value();
        }
      } else {
        for (auto f = Base::Loop (index) (data, dir); f; ++f) {
          if (!f.padding())
            sum_dec += Eigen::Vector3d (abs (dir.row(1)[0]), abs (dir.row(1)[1]), abs (dir.row(1)[2])) * data.value();
        }
      }
      if ((sum_dec.array() != 0.0).any())
        sum_dec.normalize();
      for (out.index(3) = 0; out.index(3) != 3; ++out.index(3))
        out.value() = sum_dec[size_t(out.index(3))];
    }
  protected:
    FixelDataType vol;
    Image<float> dir;
};


class DEC_scaled : protected Base
{ MEMALIGN (DEC_scaled)
  public:
    DEC_scaled (FixelDataType& data, const index_type max_fixels, FixelDataType& vol, Image<float>& dir) :
        Base (data, max_fixels),
        vol (vol), dir (dir) {}

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      Eigen::Vector3d sum_dec = {0.0, 0.0, 0.0};
      default_type sum_value = 0.0;
      if (vol.valid()) {
        default_type sum_volume = 0.0;
        for (auto f = Base::Loop (index) (data, vol, dir); f; ++f) {
          if (!f.padding()) {
            sum_dec += Eigen::Vector3d (abs (dir.row(1)[0]), abs (dir.row(1)[1]), abs (dir.row(1)[2])) * data.value() * vol.value();
            sum_volume += vol.value();
            sum_value += vol.value() * data.value();
          }
        }
        if ((sum_dec.array() != 0.0).any())
          sum_dec.normalize();
        sum_dec *= (sum_value / sum_volume);
      } else {
        for (auto f = Base::Loop (index) (data, dir); f; ++f) {
          if (!f.padding()) {
            sum_dec += Eigen::Vector3d (abs (dir.row(1)[0]), abs (dir.row(1)[1]), abs (dir.row(1)[2])) * data.value();
            sum_value += data.value();
          }
        }
        if ((sum_dec.array() != 0.0).any())
          sum_dec.normalize();
        sum_dec *= sum_value;
      }
      for (out.index(3) = 0; out.index(3) != 3; ++out.index(3))
        out.value() = sum_dec[size_t(out.index(3))];
    }
  protected:
    FixelDataType vol;
    Image<float> dir;
};


class None : protected Base
{ MEMALIGN (None)
  public:
    None (FixelDataType& data, const index_type max_fixels, const float fill_value) :
        Base (data, max_fixels, true, fill_value) { }

    void operator() (FixelIndexType& index, Image<float>& out)
    {
      for (auto f = Base::Loop (index) (data); f; ++f) {
        out.index(3) = f.fixel_index;
        out.value() = f.padding() ? pad_value : data.value();
      }
    }
};







void run ()
{
  auto in_data = Fixel::open_fixel_data_file<typename FixelDataType::value_type> (argument[0]);
  if (in_data.size(2) != 1)
    throw Exception ("Input fixel data file must have a single scalar value per fixel (i.e. have dimensions Nx1x1)");

  Header in_index_header = Fixel::find_index_header (Fixel::get_fixel_directory (argument[0]));
  auto in_index_image = in_index_header.get_image<typename FixelIndexType::value_type>();

  Image<float> in_directions;

  const int op = argument[1];

  const index_type max_fixels = get_option_value ("number", 0);
  if (max_fixels && op == 7)
    throw Exception ("\"count\" statistic is meaningless if constraining the number of fixels per voxel using the -number option");

  Header H_out (in_index_header);
  H_out.datatype() = DataType::Float32;
  H_out.datatype().set_byte_order_native();
  H_out.keyval().erase (Fixel::n_fixels_key);
  if (op == 7) { // count
    H_out.ndim() = 3;
    H_out.datatype() = DataType::UInt8;
  } else if (op == 10 || op == 11) { // dec
    H_out.ndim() = 4;
    H_out.size (3) = 3;
  } else if (op == 12) { // none
    H_out.ndim() = 4;
    if (max_fixels) {
      H_out.size(3) = max_fixels;
    } else {
      index_type max_count = 0;
      for (auto l = Loop ("determining largest fixel count", in_index_image, 0, 3) (in_index_image); l; ++l)
        max_count = std::max (max_count, (index_type)in_index_image.value());
      if (max_count == 0)
        throw Exception ("fixel image is empty");
      // 3 volumes per fixel if performing split_dir
      H_out.size(3) = max_count;
    }
  } else {
    H_out.ndim() = 3;
  }

  if (op == 10 || op == 11)  // dec
    in_directions = Fixel::find_directions_header (
                    Fixel::get_fixel_directory (in_data.name())).get_image<float>().with_direct_io();

  FixelDataType in_vol;
  auto opt = get_options ("weighted");
  if (opt.size()) {
    in_vol = FixelDataType::open (opt[0][0]);
    check_dimensions (in_data, in_vol);
  }

  if (op == 2 || op == 3 || op == 4 || op == 5 || op == 6 ||
      op == 7 || op == 8 || op == 9 || op == 12) {
    if (in_vol.valid())
      WARN ("Option -weighted has no meaningful interpretation for the operation specified; ignoring");
  }

  opt = get_options ("fill");
  float fill_value = 0.0;
  if (opt.size()) {
    if (op == 12) {
      fill_value = opt[0][0];
    } else {
      WARN ("Option -fill ignored; only applicable to \"none\" operation");
    }
  }

  auto out = Image<float>::create (argument[2], H_out);

  auto loop = ThreadedLoop ("converting sparse fixel data to scalar image", in_index_image, 0, 3);

  switch (op) {
    case 0:  loop.run (Mean       (in_data, max_fixels, in_vol), in_index_image, out); break;
    case 1:  loop.run (Sum        (in_data, max_fixels, in_vol), in_index_image, out); break;
    case 2:  loop.run (Product    (in_data, max_fixels), in_index_image, out); break;
    case 3:  loop.run (Min        (in_data, max_fixels), in_index_image, out); break;
    case 4:  loop.run (Max        (in_data, max_fixels), in_index_image, out); break;
    case 5:  loop.run (AbsMax     (in_data, max_fixels), in_index_image, out); break;
    case 6:  loop.run (MagMax     (in_data, max_fixels), in_index_image, out); break;
    case 7:  loop.run ([](Image<index_type>& index, Image<float>& out) { // count
                          out.value() = index.value();
                       }, in_index_image, out); break;
    case 8:  loop.run (Complexity (in_data, max_fixels), in_index_image, out); break;
    case 9:  loop.run (SF         (in_data, max_fixels), in_index_image, out); break;
    case 10: loop.run (DEC_unit   (in_data, max_fixels, in_vol, in_directions), in_index_image, out); break;
    case 11: loop.run (DEC_scaled (in_data, max_fixels, in_vol, in_directions), in_index_image, out); break;
    case 12: loop.run (::None     (in_data, max_fixels, fill_value), in_index_image, out); break;
  }

}