1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
/**********************************************************************
CONVENIENCE MACROS:
**********************************************************************/
#ifdef SECTION
#undef SECTION_TITLE
#undef UNARY_OP
#undef BINARY_OP
#undef TERNARY_OP
# if SECTION == 1 // usage section
#define SECTION_TITLE(TITLE) \
+ OptionGroup (TITLE)
#define UNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
+ Option (#OPTION, FEEDBACK " : " DESCRIPTION).allow_multiple()
#define BINARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
+ Option (#OPTION, FEEDBACK " : " DESCRIPTION).allow_multiple()
#define TERNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
+ Option (#OPTION, FEEDBACK " : " DESCRIPTION).allow_multiple()
# elif SECTION == 2 // code section
#define SECTION_TITLE(TITLE)
#define UNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
class Op_##OPTION : public OpUnary { NOMEMALIGN \
public: \
Op_##OPTION () : OpUnary (FEEDBACK, FLAGS & COMPLEX_MAPS_TO_REAL, FLAGS & REAL_MAPS_TO_COMPLEX) { } \
complex_type R (real_type v) const REAL_OPERATION \
complex_type Z (complex_type v) const COMPLEX_OPERATION \
};
#define BINARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
class Op_##OPTION : public OpBinary { NOMEMALIGN \
public: \
Op_##OPTION () : OpBinary (FEEDBACK, FLAGS & COMPLEX_MAPS_TO_REAL, FLAGS & REAL_MAPS_TO_COMPLEX) { } \
complex_type R (real_type a, real_type b) const REAL_OPERATION \
complex_type Z (complex_type a, complex_type b) const COMPLEX_OPERATION \
};
#define TERNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
class Op_##OPTION : public OpTernary { NOMEMALIGN \
public: \
Op_##OPTION () : OpTernary (FEEDBACK, FLAGS & COMPLEX_MAPS_TO_REAL, FLAGS & REAL_MAPS_TO_COMPLEX) { } \
complex_type R (real_type a, real_type b, real_type c) const REAL_OPERATION \
complex_type Z (complex_type a, complex_type b, complex_type c) const COMPLEX_OPERATION \
};
# elif SECTION == 3 // parsing section
#define SECTION_TITLE(TITLE)
#define UNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
else if (opt->is (#OPTION)) unary_operation (opt->id, stack, Op_##OPTION());
#define BINARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
else if (opt->is (#OPTION)) binary_operation (opt->id, stack, Op_##OPTION());
#define TERNARY_OP(OPTION,FEEDBACK,FLAGS,DESCRIPTION,REAL_OPERATION,COMPLEX_OPERATION) \
else if (opt->is (#OPTION)) ternary_operation (opt->id, stack, Op_##OPTION());
# endif
#define NORMAL 0U
#define COMPLEX_MAPS_TO_REAL 1U
#define REAL_MAPS_TO_COMPLEX 2U
#define NOT_IMPLEMENTED { throw Exception ("operation not supported"); }
/**********************************************************************
Operations defined below:
**********************************************************************/
SECTION_TITLE ("basic operations")
UNARY_OP (abs, "|%1|", COMPLEX_MAPS_TO_REAL, "return absolute value (magnitude) of real or complex number", { return abs (v); }, { return abs (v); } )
UNARY_OP (neg, "-%1", NORMAL, "negative value", { return -v; }, { return -v; })
BINARY_OP (add, "(%1 + %2)", NORMAL, "add values", { return a+b; }, { return a+b; })
BINARY_OP (subtract, "(%1 - %2)", NORMAL, "subtract nth operand from (n-1)th", { return a-b; }, { return a-b; })
BINARY_OP (multiply, "(%1 * %2)", NORMAL, "multiply values", { return a*b; }, { return a*b; })
BINARY_OP (divide, "(%1 / %2)", NORMAL, "divide (n-1)th operand by nth", { return a/b; }, { return a/b; })
BINARY_OP (min, "min (%1, %2)", NORMAL, "smallest of last two operands", { return std::min (a, b); }, NOT_IMPLEMENTED)
BINARY_OP (max, "max (%1, %2)", NORMAL, "greatest of last two operands", { return std::max (a, b); }, NOT_IMPLEMENTED)
SECTION_TITLE ("comparison operators")
BINARY_OP (lt, "(%1 < %2)", NORMAL, "less-than operator (true=1, false=0)", { return a < b; }, NOT_IMPLEMENTED)
BINARY_OP (gt, "(%1 > %2)", NORMAL, "greater-than operator (true=1, false=0)", { return a > b; }, NOT_IMPLEMENTED)
BINARY_OP (le, "(%1 <= %2)", NORMAL, "less-than-or-equal-to operator (true=1, false=0)", { return a <= b; }, NOT_IMPLEMENTED)
BINARY_OP (ge, "(%1 >= %2)", NORMAL, "greater-than-or-equal-to operator (true=1, false=0)", { return a >= b; }, NOT_IMPLEMENTED)
BINARY_OP (eq, "(%1 == %2)", COMPLEX_MAPS_TO_REAL, "equal-to operator (true=1, false=0)", { return a == b; }, { return a == b; })
BINARY_OP (neq, "(%1 != %2)", COMPLEX_MAPS_TO_REAL, "not-equal-to operator (true=1, false=0)", { return a != b; }, { return a != b; })
SECTION_TITLE ("conditional operators")
TERNARY_OP (if, "(%1 ? %2 : %3)", NORMAL, "if first operand is true (non-zero), return second operand, otherwise return third operand", { return a ? b : c; }, { return is_true(a) ? b : c; })
TERNARY_OP (replace, "(%1, %2 -> %3)", NORMAL, "Wherever first operand is equal to the second operand, replace with third operand", { return (a==b) ? c : a; }, { return (a==b) ? c : a; })
SECTION_TITLE ("power functions")
UNARY_OP (sqrt, "sqrt (%1)", NORMAL, "square root", { return std::sqrt (v); }, { return std::sqrt (v); })
BINARY_OP (pow, "%1^%2", NORMAL, "raise (n-1)th operand to nth power", { return std::pow (a, b); }, { return std::pow (a, b); })
SECTION_TITLE ("nearest integer operations")
UNARY_OP (round, "round (%1)", NORMAL, "round to nearest integer", { return std::round (v); }, NOT_IMPLEMENTED)
UNARY_OP (ceil, "ceil (%1)", NORMAL, "round up to nearest integer", { return std::ceil (v); }, NOT_IMPLEMENTED)
UNARY_OP (floor, "floor (%1)", NORMAL, "round down to nearest integer", { return std::floor (v); }, NOT_IMPLEMENTED)
SECTION_TITLE ("logical operators")
UNARY_OP (not, "!%1", NORMAL, "NOT operator: true (1) if operand is false (i.e. zero)", { return !v; }, { return !is_true (v); })
BINARY_OP (and, "(%1 && %2)", NORMAL, "AND operator: true (1) if both operands are true (i.e. non-zero)", { return a && b; }, { return is_true(a) && is_true(b); })
BINARY_OP (or, "(%1 || %2)", NORMAL, "OR operator: true (1) if either operand is true (i.e. non-zero)", { return a || b; }, { return is_true(a) || is_true(b); })
BINARY_OP (xor, "(%1 ^^ %2)", NORMAL, "XOR operator: true (1) if only one of the operands is true (i.e. non-zero)", { return (!a) != (!b); }, { return is_true(a) != is_true(b); })
SECTION_TITLE ("classification functions")
UNARY_OP (isnan, "isnan (%1)", COMPLEX_MAPS_TO_REAL, "true (1) if operand is not-a-number (NaN)", { return std::isnan (v); }, { return std::isnan (v.real()) || std::isnan (v.imag()); })
UNARY_OP (isinf, "isinf (%1)", COMPLEX_MAPS_TO_REAL, "true (1) if operand is infinite (Inf)", { return std::isinf (v); }, { return std::isinf (v.real()) || std::isinf (v.imag()); })
UNARY_OP (finite, "finite (%1)", COMPLEX_MAPS_TO_REAL, "true (1) if operand is finite (i.e. not NaN or Inf)", { return std::isfinite (v); }, { return std::isfinite (v.real()) && std::isfinite (v.imag()); })
SECTION_TITLE ("complex numbers")
BINARY_OP (complex, "(%1 + %2 i)", REAL_MAPS_TO_COMPLEX, "create complex number using the last two operands as real,imaginary components", { return complex_type (a, b); }, NOT_IMPLEMENTED)
BINARY_OP (polar, "(%1 /_ %2)", REAL_MAPS_TO_COMPLEX, "create complex number using the last two operands as magnitude,phase components (phase in radians)", { return std::polar (a, b); }, NOT_IMPLEMENTED)
UNARY_OP (real, "real (%1)", COMPLEX_MAPS_TO_REAL, "real part of complex number", { return v; }, { return v.real(); })
UNARY_OP (imag, "imag (%1)", COMPLEX_MAPS_TO_REAL, "imaginary part of complex number", { return 0.0; }, { return v.imag(); })
UNARY_OP (phase, "phase (%1)", COMPLEX_MAPS_TO_REAL, "phase of complex number (use -abs for magnitude)", { return v < 0.0 ? Math::pi : 0.0; }, { return std::arg (v); })
UNARY_OP (conj, "conj (%1)", NORMAL, "complex conjugate", { return v; }, { return std::conj (v); })
UNARY_OP (proj, "proj (%1)", REAL_MAPS_TO_COMPLEX, "projection onto the Riemann sphere", { return std::proj (v); }, { return std::proj (v); })
SECTION_TITLE ("exponential functions")
UNARY_OP (exp, "exp (%1)", NORMAL, "exponential function", { return std::exp (v); }, { return std::exp (v); })
UNARY_OP (log, "log (%1)", NORMAL, "natural logarithm", { return std::log (v); }, { return std::log (v); })
UNARY_OP (log10, "log10 (%1)", NORMAL, "common logarithm", { return std::log10 (v); }, { return std::log10 (v); })
SECTION_TITLE ("trigonometric functions")
UNARY_OP (cos, "cos (%1)", NORMAL, "cosine", { return std::cos (v); }, { return std::cos (v); })
UNARY_OP (sin, "sin (%1)", NORMAL, "sine", { return std::sin (v); }, { return std::sin (v); })
UNARY_OP (tan, "tan (%1)", NORMAL, "tangent", { return std::tan (v); }, { return std::tan (v); })
UNARY_OP (acos, "acos (%1)", NORMAL, "inverse cosine", { return std::acos (v); }, { return std::acos (v); })
UNARY_OP (asin, "asin (%1)", NORMAL, "inverse sine", { return std::asin (v); }, { return std::asin (v); })
UNARY_OP (atan, "atan (%1)", NORMAL, "inverse tangent", { return std::atan (v); }, { return std::atan (v); })
SECTION_TITLE ("hyperbolic functions")
UNARY_OP (cosh, "cosh (%1)", NORMAL, "hyperbolic cosine", { return std::cosh (v); }, { return std::cosh (v); })
UNARY_OP (sinh, "sinh (%1)", NORMAL, "hyperbolic sine", { return std::sinh (v); }, { return std::sinh (v); })
UNARY_OP (tanh, "tanh (%1)", NORMAL, "hyperbolic tangent", { return std::tanh (v); }, { return std::tanh (v); })
UNARY_OP (acosh, "acosh (%1)", NORMAL, "inverse hyperbolic cosine", { return std::acosh (v); }, { return std::acosh (v); })
UNARY_OP (asinh, "asinh (%1)", NORMAL, "inverse hyperbolic sine", { return std::asinh (v); }, { return std::asinh (v); })
UNARY_OP (atanh, "atanh (%1)", NORMAL, "inverse hyperbolic tangent", { return std::atanh (v); }, { return std::atanh (v); })
#undef SECTION
#else
/**********************************************************************
Main program
**********************************************************************/
#include "command.h"
#include "image.h"
#include "memory.h"
#include "math/rng.h"
#include "algo/threaded_copy.h"
#include "dwi/gradient.h"
using namespace MR;
using namespace App;
using real_type = float;
using complex_type = cfloat;
static bool transform_mis_match_reported (false);
inline bool is_true (const complex_type& z) { return z.real() || z.imag(); }
void usage () {
AUTHOR = "J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Apply generic voxel-wise mathematical operations to images";
DESCRIPTION
+ "This command will only compute per-voxel operations. "
"Use 'mrmath' to compute summary statistics across images or "
"along image axes."
+ "This command uses a stack-based syntax, with operators "
"(specified using options) operating on the top-most entries "
"(i.e. images or values) in the stack. Operands (values or "
"images) are pushed onto the stack in the order they appear "
"(as arguments) on the command-line, and operators (specified "
"as options) operate on and consume the top-most entries in "
"the stack, and push their output as a new entry on the stack."
+ "As an additional feature, this command will allow images with different "
"dimensions to be processed, provided they satisfy the following "
"conditions: for each axis, the dimensions match if they are the same size, "
"or one of them has size one. In the latter case, the entire image will be "
"replicated along that axis. This allows for example a 4D image of "
"size [ X Y Z N ] to be added to a 3D image of size [ X Y Z ], as if it "
"consisted of N copies of the 3D image along the 4th axis (the missing "
"dimension is assumed to have size 1). Another example would a "
"single-voxel 4D image of size [ 1 1 1 N ], multiplied by a 3D image of "
"size [ X Y Z ], which would allow the creation of a 4D image where each "
"volume consists of the 3D image scaled by the corresponding value for "
"that volume in the single-voxel image.";
EXAMPLES
+ Example ("Double the value stored in every voxel",
"mrcalc a.mif 2 -mult r.mif",
"This performs the operation: r = 2*a for every voxel a,r in "
"images a.mif and r.mif respectively.")
+ Example ("A more complex example",
"mrcalc a.mif -neg b.mif -div -exp 9.3 -mult r.mif",
"This performs the operation: r = 9.3*exp(-a/b)")
+ Example ("Another complex example",
"mrcalc a.mif b.mif -add c.mif d.mif -mult 4.2 -add -div r.mif",
"This performs: r = (a+b)/(c*d+4.2).")
+ Example ("Rescale the densities in a SH l=0 image",
"mrcalc ODF_CSF.mif 4 pi -mult -sqrt -div ODF_CSF_scaled.mif",
"This applies the spherical harmonic basis scaling factor: "
"1.0/sqrt(4*pi), such that a single-tissue voxel containing the "
"same intensities as the response function of that tissue "
"should contain the value 1.0.")
+ Example ("Produce a complex datatype image from Siemens magnitude & phase series",
"mrcalc DWI_MAG/ DWI_PHASE/ pi 4096 -div -mult -polar dwi_complex.mif",
"Phase images from Siemens scanners are typically not provided in Radians units, "
"but rather contain values in the range [-4096, +4094]. "
"This command usage pre-multiplies these phase values by (pi/4096) "
"to get them into units of Radians, "
"prior to using the -polar option "
"that combines magnitude & phase components at its input "
"to produce complex data.");
ARGUMENTS
+ Argument ("operand", "an input image, intensity value, or the special keywords "
"'rand' (random number between 0 and 1) or 'randn' (random number from unit "
"std.dev. normal distribution) or the mathematical constants 'e' and 'pi'.").type_various().allow_multiple();
OPTIONS
#define SECTION 1
#include "mrcalc.cpp"
+ DataType::options();
}
/**********************************************************************
STACK FRAMEWORK:
**********************************************************************/
class Evaluator;
class Chunk : public vector<complex_type> { NOMEMALIGN
public:
complex_type value;
};
class ThreadLocalStorageItem { NOMEMALIGN
public:
Chunk chunk;
copy_ptr<Image<complex_type>> image;
};
class ThreadLocalStorage : public vector<ThreadLocalStorageItem> { NOMEMALIGN
public:
void load (Chunk& chunk, Image<complex_type>& image) {
for (size_t n = 0; n < image.ndim(); ++n)
if (image.size(n) > 1)
image.index(n) = iter->index(n);
size_t n = 0;
for (size_t y = 0; y < size[1]; ++y) {
if (axes[1] < image.ndim()) if (image.size (axes[1]) > 1) image.index(axes[1]) = y;
for (size_t x = 0; x < size[0]; ++x) {
if (axes[0] < image.ndim()) if (image.size (axes[0]) > 1) image.index(axes[0]) = x;
chunk[n++] = image.value();
}
}
}
Chunk& next () {
ThreadLocalStorageItem& item ((*this)[current++]);
if (item.image) load (item.chunk, *item.image);
return item.chunk;
}
void reset (const Iterator& current_position) { current = 0; iter = ¤t_position; }
const Iterator* iter;
vector<size_t> axes, size;
private:
size_t current;
};
class LoadedImage { NOMEMALIGN
public:
LoadedImage (std::shared_ptr<Image<complex_type>>& i, const bool c) :
image (i),
image_is_complex (c) { }
std::shared_ptr<Image<complex_type>> image;
bool image_is_complex;
};
class StackEntry { NOMEMALIGN
public:
StackEntry (const char* entry) :
arg (entry),
rng_gaussian (false),
image_is_complex (false) { }
StackEntry (Evaluator* evaluator_p) :
arg (nullptr),
evaluator (evaluator_p),
rng_gaussian (false),
image_is_complex (false) { }
void load () {
if (!arg)
return;
auto search = image_list.find (arg);
if (search != image_list.end()) {
DEBUG (std::string ("image \"") + arg + "\" already loaded - re-using exising image");
image = search->second.image;
image_is_complex = search->second.image_is_complex;
}
else {
try {
auto header = Header::open (arg);
image_is_complex = header.datatype().is_complex();
image.reset (new Image<complex_type> (header.get_image<complex_type>()));
image_list.insert (std::make_pair (arg, LoadedImage (image, image_is_complex)));
}
catch (Exception& e_image) {
try {
std::string a = lowercase (arg);
if (a == "pi") { value = Math::pi; }
else if (a == "e") { value = Math::e; }
else if (a == "rand") { value = 0.0; rng.reset (new Math::RNG()); rng_gaussian = false; }
else if (a == "randn") { value = 0.0; rng.reset (new Math::RNG()); rng_gaussian = true; }
else { value = to<complex_type> (arg); }
} catch (Exception& e_number) {
Exception e (std::string ("Could not interpret string \"") + arg + "\" as either an image path or a numerical value");
e.push_back ("As image: ");
for (size_t i = 0; i != e_image.num(); ++i)
e.push_back (e_image[i]);
e.push_back ("As numerical value: ");
for (size_t i = 0; i != e_number.num(); ++i)
e.push_back (e_number[i]);
throw e;
}
}
}
arg = nullptr;
}
const char* arg;
std::shared_ptr<Evaluator> evaluator;
std::shared_ptr<Image<complex_type>> image;
copy_ptr<Math::RNG> rng;
complex_type value;
bool rng_gaussian;
bool image_is_complex;
bool is_complex () const;
static std::map<std::string, LoadedImage> image_list;
Chunk& evaluate (ThreadLocalStorage& storage) const;
};
std::map<std::string, LoadedImage> StackEntry::image_list;
class Evaluator { NOMEMALIGN
public:
Evaluator (const std::string& name, const char* format_string, bool complex_maps_to_real = false, bool real_maps_to_complex = false) :
id (name),
format (format_string),
ZtoR (complex_maps_to_real),
RtoZ (real_maps_to_complex) { }
virtual ~Evaluator() { }
const std::string id;
const char* format;
bool ZtoR, RtoZ;
vector<StackEntry> operands;
Chunk& evaluate (ThreadLocalStorage& storage) const {
Chunk& in1 (operands[0].evaluate (storage));
if (num_args() == 1) return evaluate (in1);
Chunk& in2 (operands[1].evaluate (storage));
if (num_args() == 2) return evaluate (in1, in2);
Chunk& in3 (operands[2].evaluate (storage));
return evaluate (in1, in2, in3);
}
virtual Chunk& evaluate (Chunk& in) const { throw Exception ("operation \"" + id + "\" not supported!"); return in; }
virtual Chunk& evaluate (Chunk& a, Chunk& b) const { throw Exception ("operation \"" + id + "\" not supported!"); return a; }
virtual Chunk& evaluate (Chunk& a, Chunk& b, Chunk& c) const { throw Exception ("operation \"" + id + "\" not supported!"); return a; }
virtual bool is_complex () const {
for (size_t n = 0; n < operands.size(); ++n)
if (operands[n].is_complex())
return !ZtoR;
return RtoZ;
}
size_t num_args () const { return operands.size(); }
};
inline bool StackEntry::is_complex () const {
if (image) return image_is_complex;
if (evaluator) return evaluator->is_complex();
if (rng) return false;
return value.imag() != 0.0;
}
inline Chunk& StackEntry::evaluate (ThreadLocalStorage& storage) const
{
if (evaluator) return evaluator->evaluate (storage);
if (rng) {
Chunk& chunk = storage.next();
if (rng_gaussian) {
std::normal_distribution<real_type> dis (0.0, 1.0);
for (size_t n = 0; n < chunk.size(); ++n)
chunk[n] = dis (*rng);
}
else {
std::uniform_real_distribution<real_type> dis (0.0, 1.0);
for (size_t n = 0; n < chunk.size(); ++n)
chunk[n] = dis (*rng);
}
return chunk;
}
return storage.next();
}
inline void replace (std::string& orig, size_t n, const std::string& value)
{
if (orig[0] == '(' && orig[orig.size()-1] == ')') {
size_t pos = orig.find ("(%"+str(n+1)+")");
if (pos != orig.npos) {
orig.replace (pos, 4, value);
return;
}
}
size_t pos = orig.find ("%"+str(n+1));
if (pos != orig.npos)
orig.replace (pos, 2, value);
}
// TODO: move this into StackEntry class and compute string at construction
// to make sure full operation is recorded, even for scalar operations that
// get evaluated there and then and so get left out if the string is created
// later:
std::string operation_string (const StackEntry& entry)
{
if (entry.image)
return entry.image->name();
else if (entry.rng)
return entry.rng_gaussian ? "randn()" : "rand()";
else if (entry.evaluator) {
std::string s = entry.evaluator->format;
for (size_t n = 0; n < entry.evaluator->operands.size(); ++n)
replace (s, n, operation_string (entry.evaluator->operands[n]));
return s;
}
else return str(entry.value);
}
template <class Operation>
class UnaryEvaluator : public Evaluator { NOMEMALIGN
public:
UnaryEvaluator (const std::string& name, Operation operation, const StackEntry& operand) :
Evaluator (name, operation.format, operation.ZtoR, operation.RtoZ),
op (operation) {
operands.push_back (operand);
}
Operation op;
virtual Chunk& evaluate (Chunk& in) const {
if (operands[0].is_complex())
for (size_t n = 0; n < in.size(); ++n)
in[n] = op.Z (in[n]);
else
for (size_t n = 0; n < in.size(); ++n)
in[n] = op.R (in[n].real());
return in;
}
};
template <class Operation>
class BinaryEvaluator : public Evaluator { NOMEMALIGN
public:
BinaryEvaluator (const std::string& name, Operation operation, const StackEntry& operand1, const StackEntry& operand2) :
Evaluator (name, operation.format, operation.ZtoR, operation.RtoZ),
op (operation) {
operands.push_back (operand1);
operands.push_back (operand2);
}
Operation op;
virtual Chunk& evaluate (Chunk& a, Chunk& b) const {
Chunk& out (a.size() ? a : b);
if (operands[0].is_complex() || operands[1].is_complex()) {
for (size_t n = 0; n < out.size(); ++n)
out[n] = op.Z (
a.size() ? a[n] : a.value,
b.size() ? b[n] : b.value );
}
else {
for (size_t n = 0; n < out.size(); ++n)
out[n] = op.R (
a.size() ? a[n].real() : a.value.real(),
b.size() ? b[n].real() : b.value.real() );
}
return out;
}
};
template <class Operation>
class TernaryEvaluator : public Evaluator { NOMEMALIGN
public:
TernaryEvaluator (const std::string& name, Operation operation, const StackEntry& operand1, const StackEntry& operand2, const StackEntry& operand3) :
Evaluator (name, operation.format, operation.ZtoR, operation.RtoZ),
op (operation) {
operands.push_back (operand1);
operands.push_back (operand2);
operands.push_back (operand3);
}
Operation op;
virtual Chunk& evaluate (Chunk& a, Chunk& b, Chunk& c) const {
Chunk& out (a.size() ? a : (b.size() ? b : c));
if (operands[0].is_complex() || operands[1].is_complex() || operands[2].is_complex()) {
for (size_t n = 0; n < out.size(); ++n)
out[n] = op.Z (
a.size() ? a[n] : a.value,
b.size() ? b[n] : b.value,
c.size() ? c[n] : c.value );
}
else {
for (size_t n = 0; n < out.size(); ++n)
out[n] = op.R (
a.size() ? a[n].real() : a.value.real(),
b.size() ? b[n].real() : b.value.real(),
c.size() ? c[n].real() : c.value.real() );
}
return out;
}
};
template <class Operation>
void unary_operation (const std::string& operation_name, vector<StackEntry>& stack, Operation operation)
{
if (stack.empty())
throw Exception ("no operand in stack for operation \"" + operation_name + "\"!");
StackEntry& a (stack[stack.size()-1]);
a.load();
if (a.evaluator || a.image || a.rng) {
StackEntry entry (new UnaryEvaluator<Operation> (operation_name, operation, a));
stack.back() = entry;
}
else {
try {
a.value = ( a.value.imag() == 0.0 ? operation.R (a.value.real()) : operation.Z (a.value) );
}
catch (...) {
throw Exception ("operation \"" + operation_name + "\" not supported for data type supplied");
}
}
}
template <class Operation>
void binary_operation (const std::string& operation_name, vector<StackEntry>& stack, Operation operation)
{
if (stack.size() < 2)
throw Exception ("not enough operands in stack for operation \"" + operation_name + "\"");
StackEntry& a (stack[stack.size()-2]);
StackEntry& b (stack[stack.size()-1]);
a.load();
b.load();
if (a.evaluator || a.image || a.rng || b.evaluator || b.image || b.rng) {
StackEntry entry (new BinaryEvaluator<Operation> (operation_name, operation, a, b));
stack.pop_back();
stack.back() = entry;
}
else {
a.value = ( a.value.imag() == 0.0 && b.value.imag() == 0.0 ?
operation.R (a.value.real(), b.value.real()) :
operation.Z (a.value, b.value) );
stack.pop_back();
}
}
template <class Operation>
void ternary_operation (const std::string& operation_name, vector<StackEntry>& stack, Operation operation)
{
if (stack.size() < 3)
throw Exception ("not enough operands in stack for operation \"" + operation_name + "\"");
StackEntry& a (stack[stack.size()-3]);
StackEntry& b (stack[stack.size()-2]);
StackEntry& c (stack[stack.size()-1]);
a.load();
b.load();
c.load();
if (a.evaluator || a.image || a.rng || b.evaluator || b.image || b.rng || c.evaluator || c.image || c.rng) {
StackEntry entry (new TernaryEvaluator<Operation> (operation_name, operation, a, b, c));
stack.pop_back();
stack.pop_back();
stack.back() = entry;
}
else {
a.value = ( a.value.imag() == 0.0 && b.value.imag() == 0.0 && c.value.imag() == 0.0 ?
operation.R (a.value.real(), b.value.real(), c.value.real()) :
operation.Z (a.value, b.value, c.value) );
stack.pop_back();
stack.pop_back();
}
}
/**********************************************************************
MULTI-THREADED RUNNING OF OPERATIONS:
**********************************************************************/
void get_header (const StackEntry& entry, Header& header)
{
if (entry.evaluator) {
for (size_t n = 0; n < entry.evaluator->operands.size(); ++n)
get_header (entry.evaluator->operands[n], header);
return;
}
if (!entry.image)
return;
if (header.ndim() == 0) {
header = *entry.image;
return;
}
if (header.ndim() < entry.image->ndim())
header.ndim() = entry.image->ndim();
for (size_t n = 0; n < std::min<size_t> (header.ndim(), entry.image->ndim()); ++n) {
if (header.size(n) > 1 && entry.image->size(n) > 1 && header.size(n) != entry.image->size(n))
throw Exception ("dimensions of input images do not match - aborting");
if (!voxel_grids_match_in_scanner_space (header, *(entry.image), 1.0e-4) && !transform_mis_match_reported) {
WARN ("header transformations of input images do not match");
transform_mis_match_reported = true;
}
header.size(n) = std::max (header.size(n), entry.image->size(n));
if (!std::isfinite (header.spacing(n)))
header.spacing(n) = entry.image->spacing(n);
}
header.merge_keyval (entry.image->keyval());
}
class ThreadFunctor { NOMEMALIGN
public:
ThreadFunctor (
const vector<size_t>& inner_axes,
const StackEntry& top_of_stack,
Image<complex_type>& output_image) :
top_entry (top_of_stack),
image (output_image),
loop (Loop (inner_axes)) {
storage.axes = loop.axes;
storage.size.push_back (image.size(storage.axes[0]));
storage.size.push_back (image.size(storage.axes[1]));
chunk_size = image.size (storage.axes[0]) * image.size (storage.axes[1]);
allocate_storage (top_entry);
}
void allocate_storage (const StackEntry& entry) {
if (entry.evaluator) {
for (size_t n = 0; n < entry.evaluator->operands.size(); ++n)
allocate_storage (entry.evaluator->operands[n]);
return;
}
storage.push_back (ThreadLocalStorageItem());
if (entry.image) {
storage.back().image.reset (new Image<complex_type> (*entry.image));
storage.back().chunk.resize (chunk_size);
return;
}
else if (entry.rng) {
storage.back().chunk.resize (chunk_size);
}
else storage.back().chunk.value = entry.value;
}
void operator() (const Iterator& iter) {
storage.reset (iter);
assign_pos_of (iter).to (image);
Chunk& chunk = top_entry.evaluate (storage);
auto value = chunk.cbegin();
for (auto l = loop (image); l; ++l)
image.value() = *(value++);
}
const StackEntry& top_entry;
Image<complex_type> image;
decltype (Loop (vector<size_t>())) loop;
ThreadLocalStorage storage;
size_t chunk_size;
};
void run_operations (const vector<StackEntry>& stack)
{
Header header;
get_header (stack[0], header);
if (header.ndim() == 0) {
DEBUG ("no valid images supplied - assuming calculator mode");
if (stack.size() != 1)
throw Exception ("too many operands left on stack!");
assert (!stack[0].evaluator);
assert (!stack[0].image);
print (str (stack[0].value) + "\n");
return;
}
if (stack.size() == 1)
throw Exception ("output image not specified");
if (stack.size() > 2)
throw Exception ("too many operands left on stack!");
if (!stack[1].arg)
throw Exception ("output image not specified");
if (stack[0].is_complex()) {
header.datatype() = DataType::from_command_line (DataType::CFloat32);
if (!header.datatype().is_complex())
throw Exception ("output datatype must be complex");
}
else header.datatype() = DataType::from_command_line (DataType::Float32);
auto output = Header::create (stack[1].arg, header).get_image<complex_type>();
auto loop = ThreadedLoop ("computing: " + operation_string(stack[0]), output, 0, output.ndim(), 2);
ThreadFunctor functor (loop.inner_axes, stack[0], output);
loop.run_outer (functor);
}
/**********************************************************************
OPERATIONS BASIC FRAMEWORK:
**********************************************************************/
class OpBase { NOMEMALIGN
public:
OpBase (const char* format_string, bool complex_maps_to_real = false, bool real_map_to_complex = false) :
format (format_string),
ZtoR (complex_maps_to_real),
RtoZ (real_map_to_complex) { }
const char* format;
const bool ZtoR, RtoZ;
};
class OpUnary : public OpBase { NOMEMALIGN
public:
OpUnary (const char* format_string, bool complex_maps_to_real = false, bool real_map_to_complex = false) :
OpBase (format_string, complex_maps_to_real, real_map_to_complex) { }
complex_type R (real_type v) const { throw Exception ("operation not supported!"); return v; }
complex_type Z (complex_type v) const { throw Exception ("operation not supported!"); return v; }
};
class OpBinary : public OpBase { NOMEMALIGN
public:
OpBinary (const char* format_string, bool complex_maps_to_real = false, bool real_map_to_complex = false) :
OpBase (format_string, complex_maps_to_real, real_map_to_complex) { }
complex_type R (real_type a, real_type b) const { throw Exception ("operation not supported!"); return a; }
complex_type Z (complex_type a, complex_type b) const { throw Exception ("operation not supported!"); return a; }
};
class OpTernary : public OpBase { NOMEMALIGN
public:
OpTernary (const char* format_string, bool complex_maps_to_real = false, bool real_map_to_complex = false) :
OpBase (format_string, complex_maps_to_real, real_map_to_complex) { }
complex_type R (real_type a, real_type b, real_type c) const { throw Exception ("operation not supported!"); return a; }
complex_type Z (complex_type a, complex_type b, complex_type c) const { throw Exception ("operation not supported!"); return a; }
};
/**********************************************************************
EXPAND OPERATIONS:
**********************************************************************/
#define SECTION 2
#include "mrcalc.cpp"
/**********************************************************************
MAIN BODY OF COMMAND:
**********************************************************************/
void run () {
vector<StackEntry> stack;
for (int n = 1; n < App::argc; ++n) {
const Option* opt = match_option (App::argv[n]);
if (opt) {
if (opt->is ("datatype")) ++n;
else if (opt->is ("nthreads")) ++n;
else if (opt->is ("force") || opt->is ("info") || opt->is ("debug") || opt->is ("quiet"))
continue;
else if (opt->is ("config")) n+=2;
#define SECTION 3
#include "mrcalc.cpp"
else
throw Exception (std::string ("operation \"") + opt->id + "\" not yet implemented!");
}
else {
stack.push_back (App::argv[n]);
}
}
stack[0].load();
run_operations (stack);
}
#endif
|