1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "image.h"
#include "types.h"
#include "algo/loop.h"
#include "file/path.h"
#include "math/stats/fwe.h"
#include "math/stats/glm.h"
#include "math/stats/import.h"
#include "math/stats/shuffle.h"
#include "math/stats/typedefs.h"
#include "stats/cluster.h"
#include "stats/enhance.h"
#include "stats/permtest.h"
#include "stats/tfce.h"
using namespace MR;
using namespace App;
using namespace MR::Math::Stats;
using namespace MR::Math::Stats::GLM;
using Stats::PermTest::count_matrix_type;
#define DEFAULT_TFCE_DH 0.1
#define DEFAULT_TFCE_H 2.0
#define DEFAULT_TFCE_E 0.5
#define DEFAULT_EMPIRICAL_SKEW 1.0
void usage ()
{
AUTHOR = "David Raffelt (david.raffelt@florey.edu.au)";
SYNOPSIS = "Voxel-based analysis using permutation testing and threshold-free cluster enhancement";
DESCRIPTION
+ Math::Stats::GLM::column_ones_description;
REFERENCES
+ "* If not using the -threshold command-line option:\n"
"Smith, S. M. & Nichols, T. E. "
"Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. "
"NeuroImage, 2009, 44, 83-98"
+ "* If using the -nonstationary option:\n"
"Salimi-Khorshidi, G. Smith, S.M. Nichols, T.E. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. "
"Neuroimage, 2011, 54(3), 2006-19";
ARGUMENTS
+ Argument ("input", "a text file containing the file names of the input images, one file per line").type_file_in()
+ Argument ("design", "the design matrix").type_file_in()
+ Argument ("contrast", "the contrast matrix").type_file_in()
+ Argument ("mask", "a mask used to define voxels included in the analysis.").type_image_in()
+ Argument ("output", "the filename prefix for all output.").type_text();
OPTIONS
+ Math::Stats::shuffle_options (true, DEFAULT_EMPIRICAL_SKEW)
+ Stats::TFCE::Options (DEFAULT_TFCE_DH, DEFAULT_TFCE_E, DEFAULT_TFCE_H)
+ Math::Stats::GLM::glm_options ("voxel")
+ OptionGroup ("Additional options for mrclusterstats")
+ Option ("threshold", "the cluster-forming threshold to use for a standard cluster-based analysis. "
"This disables TFCE, which is the default otherwise.")
+ Argument ("value").type_float (1.0e-6)
+ Option ("connectivity", "use 26-voxel-neighbourhood connectivity (Default: 6)");
}
using value_type = Stats::TFCE::value_type;
template <class VectorType>
void write_output (const VectorType& data,
const Voxel2Vector& v2v,
const std::string& path,
const Header& header) {
auto image = Image<float>::create (path, header);
for (size_t i = 0; i != v2v.size(); i++) {
assign_pos_of (v2v[i]).to (image);
image.value() = data[i];
}
}
// Define data importer class that will obtain voxel data for a
// specific subject based on the string path to the image file for
// that subject
//
// The challenge with this mechanism for voxel data is that the
// class must know how to map data from voxels in 3D space into
// a 1D vector of data. This mapping must be done based on the
// analysis mask prior to the importing of any subject data.
// Moreover, in the case of voxel-wise design matrix columns, the
// class must have access to this mapping functionality without
// any modification of the class constructor (since these data
// are initialised in the CohortDataImport class).
//
class SubjectVoxelImport : public SubjectDataImportBase
{ MEMALIGN(SubjectVoxelImport)
public:
SubjectVoxelImport (const std::string& path) :
SubjectDataImportBase (path),
H (Header::open (path)),
data (H.get_image<float>()) { }
virtual ~SubjectVoxelImport() { }
void operator() (matrix_type::RowXpr row) const override
{
assert (v2v);
Image<float> temp (data); // For thread-safety
for (size_t i = 0; i != size(); ++i) {
assign_pos_of ((*v2v)[i]).to (temp);
row[i] = temp.value();
}
}
default_type operator[] (const size_t index) const override
{
assert (v2v);
Image<float> temp (data); // For thread-safety
assign_pos_of ((*v2v)[index]).to (temp);
assert (!is_out_of_bounds (temp));
return temp.value();
}
size_t size() const override { assert (v2v); return v2v->size(); }
const Header& header() const { return H; }
static void set_mapping (std::shared_ptr<Voxel2Vector>& ptr) {
v2v = ptr;
}
private:
Header H;
const Image<float> data;
static std::shared_ptr<Voxel2Vector> v2v;
};
std::shared_ptr<Voxel2Vector> SubjectVoxelImport::v2v = nullptr;
void run() {
const value_type cluster_forming_threshold = get_option_value ("threshold", NaN);
const value_type tfce_dh = get_option_value ("tfce_dh", DEFAULT_TFCE_DH);
const value_type tfce_H = get_option_value ("tfce_h", DEFAULT_TFCE_H);
const value_type tfce_E = get_option_value ("tfce_e", DEFAULT_TFCE_E);
const bool use_tfce = !std::isfinite (cluster_forming_threshold);
const bool do_26_connectivity = get_options("connectivity").size();
const bool do_nonstationarity_adjustment = get_options ("nonstationarity").size();
const default_type empirical_skew = get_option_value ("skew_nonstationarity", DEFAULT_EMPIRICAL_SKEW);
// Load analysis mask and compute adjacency
auto mask_header = Header::open (argument[3]);
check_effective_dimensionality (mask_header, 3);
auto mask_image = mask_header.get_image<bool>();
std::shared_ptr<Voxel2Vector> v2v = make_shared<Voxel2Vector> (mask_image, mask_header);
SubjectVoxelImport::set_mapping (v2v);
Filter::Connector connector;
connector.adjacency.set_26_adjacency (do_26_connectivity);
connector.adjacency.initialise (mask_header, *v2v);
const size_t num_voxels = v2v->size();
// Read file names and check files exist
CohortDataImport importer;
importer.initialise<SubjectVoxelImport> (argument[0]);
for (size_t i = 0; i != importer.size(); ++i) {
if (!dimensions_match (dynamic_cast<SubjectVoxelImport*>(importer[i].get())->header(), mask_header))
throw Exception ("Image file \"" + importer[i]->name() + "\" does not match analysis mask");
}
CONSOLE ("Number of inputs: " + str(importer.size()));
// Load design matrix
const matrix_type design = load_matrix<value_type> (argument[1]);
if (design.rows() != (ssize_t)importer.size())
throw Exception ("Number of input files does not match number of rows in design matrix");
// Before validating the contrast matrix, we first need to see if there are any
// additional design matrix columns coming from voxel-wise subject data
// TODO Functionalise this
vector<CohortDataImport> extra_columns;
bool nans_in_columns = false;
auto opt = get_options ("column");
for (size_t i = 0; i != opt.size(); ++i) {
extra_columns.push_back (CohortDataImport());
extra_columns[i].initialise<SubjectVoxelImport> (opt[i][0]);
if (!extra_columns[i].allFinite())
nans_in_columns = true;
}
const ssize_t num_factors = design.cols() + extra_columns.size();
CONSOLE ("Number of factors: " + str(num_factors));
if (extra_columns.size()) {
CONSOLE ("Number of element-wise design matrix columns: " + str(extra_columns.size()));
if (nans_in_columns)
CONSOLE ("Non-finite values detected in element-wise design matrix columns; individual rows will be removed from voxel-wise design matrices accordingly");
}
check_design (design, extra_columns.size());
// Load variance groups
auto variance_groups = GLM::load_variance_groups (design.rows());
const size_t num_vgs = variance_groups.size() ? variance_groups.maxCoeff()+1 : 1;
if (num_vgs > 1)
CONSOLE ("Number of variance groups: " + str(num_vgs));
// Load hypotheses
const vector<Hypothesis> hypotheses = Math::Stats::GLM::load_hypotheses (argument[2]);
const size_t num_hypotheses = hypotheses.size();
if (hypotheses[0].cols() != num_factors)
throw Exception ("The number of columns in the contrast matrix (" + str(hypotheses[0].cols()) + ")"
+ " does not equal the number of columns in the design matrix (" + str(design.cols()) + ")"
+ (extra_columns.size() ? " (taking into account the " + str(extra_columns.size()) + " uses of -column)" : ""));
CONSOLE ("Number of hypotheses: " + str(num_hypotheses));
matrix_type data (importer.size(), num_voxels);
{
// Load images
ProgressBar progress ("loading input images", importer.size());
for (size_t subject = 0; subject < importer.size(); subject++) {
(*importer[subject]) (data.row (subject));
progress++;
}
}
const bool nans_in_data = !data.allFinite();
if (nans_in_data) {
INFO ("Non-finite values present in data; rows will be removed from voxel-wise design matrices accordingly");
if (!extra_columns.size()) {
INFO ("(Note that this will result in slower execution than if such values were not present)");
}
}
Header output_header (mask_header);
output_header.datatype() = DataType::Float32;
//output_header.keyval()["num permutations"] = str(num_perms);
output_header.keyval()["26 connectivity"] = str(do_26_connectivity);
output_header.keyval()["nonstationary adjustment"] = str(do_nonstationarity_adjustment);
if (use_tfce) {
output_header.keyval()["tfce_dh"] = str(tfce_dh);
output_header.keyval()["tfce_e"] = str(tfce_E);
output_header.keyval()["tfce_h"] = str(tfce_H);
} else {
output_header.keyval()["threshold"] = str(cluster_forming_threshold);
}
const std::string prefix (argument[4]);
// Only add contrast matrix row number to image outputs if there's more than one hypothesis
auto postfix = [&] (const size_t i) { return (num_hypotheses > 1) ? ("_" + hypotheses[i].name()) : ""; };
{
matrix_type betas (num_factors, num_voxels);
matrix_type abs_effect_size (num_voxels, num_hypotheses);
matrix_type std_effect_size (num_voxels, num_hypotheses);
matrix_type stdev (num_vgs, num_voxels);
vector_type cond (num_voxels);
Math::Stats::GLM::all_stats (data, design, extra_columns, hypotheses, variance_groups,
cond, betas, abs_effect_size, std_effect_size, stdev);
ProgressBar progress ("Outputting beta coefficients, effect size and standard deviation", num_factors + (2 * num_hypotheses) + num_vgs + (nans_in_data || extra_columns.size() ? 1 : 0));
for (ssize_t i = 0; i != num_factors; ++i) {
write_output (betas.row(i), *v2v, prefix + "beta" + str(i) + ".mif", output_header);
++progress;
}
for (size_t i = 0; i != num_hypotheses; ++i) {
if (!hypotheses[i].is_F()) {
write_output (abs_effect_size.col(i), *v2v, prefix + "abs_effect" + postfix(i) + ".mif", output_header);
++progress;
if (num_vgs == 1)
write_output (std_effect_size.col(i), *v2v, prefix + "std_effect" + postfix(i) + ".mif", output_header);
} else {
++progress;
}
++progress;
}
if (nans_in_data || extra_columns.size()) {
write_output (cond, *v2v, prefix + "cond.mif", output_header);
++progress;
}
if (num_vgs == 1) {
write_output (stdev.row(0), *v2v, prefix + "std_dev.mif", output_header);
} else {
for (size_t i = 0; i != num_vgs; ++i) {
write_output (stdev.row(i), *v2v, prefix + "std_dev" + str(i) + ".mif", output_header);
++progress;
}
}
}
// Construct the class for performing the initial statistical tests
std::shared_ptr<GLM::TestBase> glm_test;
if (extra_columns.size() || nans_in_data) {
if (variance_groups.size())
glm_test.reset (new GLM::TestVariableHeteroscedastic (extra_columns, data, design, hypotheses, variance_groups, nans_in_data, nans_in_columns));
else
glm_test.reset (new GLM::TestVariableHomoscedastic (extra_columns, data, design, hypotheses, nans_in_data, nans_in_columns));
} else {
if (variance_groups.size())
glm_test.reset (new GLM::TestFixedHeteroscedastic (data, design, hypotheses, variance_groups));
else
glm_test.reset (new GLM::TestFixedHomoscedastic (data, design, hypotheses));
}
std::shared_ptr<Stats::EnhancerBase> enhancer;
if (use_tfce) {
std::shared_ptr<Stats::TFCE::EnhancerBase> base (new Stats::Cluster::ClusterSize (connector, cluster_forming_threshold));
enhancer.reset (new Stats::TFCE::Wrapper (base, tfce_dh, tfce_E, tfce_H));
} else {
enhancer.reset (new Stats::Cluster::ClusterSize (connector, cluster_forming_threshold));
}
matrix_type empirical_enhanced_statistic;
if (do_nonstationarity_adjustment) {
if (!use_tfce)
throw Exception ("Nonstationarity adjustment is not currently implemented for threshold-based cluster analysis");
Stats::PermTest::precompute_empirical_stat (glm_test, enhancer, empirical_skew, empirical_enhanced_statistic);
for (size_t i = 0; i != num_hypotheses; ++i)
write_output (empirical_enhanced_statistic.col(i), *v2v, prefix + "empirical" + postfix(i) + ".mif", output_header);
}
// Precompute statistic value and enhanced statistic for the default permutation
matrix_type default_statistic, default_zstat, default_enhanced;
Stats::PermTest::precompute_default_permutation (glm_test, enhancer, empirical_enhanced_statistic, default_statistic, default_zstat, default_enhanced);
for (size_t i = 0; i != num_hypotheses; ++i) {
write_output (default_statistic.col (i), *v2v, prefix + (hypotheses[i].is_F() ? "F" : "t") + "value" + postfix(i) + ".mif", output_header);
write_output (default_zstat .col (i), *v2v, prefix + "Zstat" + postfix(i) + ".mif", output_header);
write_output (default_enhanced .col (i), *v2v, prefix + (use_tfce ? "tfce" : "clustersize") + postfix(i) + ".mif", output_header);
}
if (!get_options ("notest").size()) {
const bool fwe_strong = get_options ("strong").size();
if (fwe_strong && num_hypotheses == 1) {
WARN("Option -strong has no effect when testing a single hypothesis only");
}
matrix_type null_distribution, uncorrected_pvalue;
count_matrix_type null_contributions;
Stats::PermTest::run_permutations (glm_test, enhancer, empirical_enhanced_statistic, default_enhanced, fwe_strong,
null_distribution, null_contributions, uncorrected_pvalue);
ProgressBar progress ("Outputting final results", (fwe_strong ? 1 : num_hypotheses) + 1 + 3*num_hypotheses);
if (fwe_strong) {
save_vector (null_distribution.col(0), prefix + "null_dist.txt");
++progress;
} else {
for (size_t i = 0; i != num_hypotheses; ++i) {
save_vector (null_distribution.col(i), prefix + "null_dist" + postfix(i) + ".txt");
++progress;
}
}
const matrix_type fwe_pvalue_output = MR::Math::Stats::fwe_pvalue (null_distribution, default_enhanced);
++progress;
for (size_t i = 0; i != num_hypotheses; ++i) {
write_output (fwe_pvalue_output.col(i), *v2v, prefix + "fwe_1mpvalue" + postfix(i) + ".mif", output_header);
++progress;
write_output (uncorrected_pvalue.col(i), *v2v, prefix + "uncorrected_pvalue" + postfix(i) + ".mif", output_header);
++progress;
write_output (null_contributions.col(i), *v2v, prefix + "null_contributions" + postfix(i) + ".mif", output_header);
++progress;
}
}
}
|