1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include <unsupported/Eigen/FFT>
#include "axes.h"
#include "command.h"
#include "image.h"
#include "progressbar.h"
#include "types.h"
#include "algo/threaded_loop.h"
#include "metadata/bids.h"
#include <numeric>
using namespace MR;
using namespace App;
void usage ()
{
AUTHOR = "Ben Jeurissen (ben.jeurissen@uantwerpen.be) & J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Remove Gibbs Ringing Artifacts";
DESCRIPTION
+ "This application attempts to remove Gibbs ringing artefacts from MRI images using the method "
"of local subvoxel-shifts proposed by Kellner et al. (see reference below for details)."
+ "This command is designed to run on data directly after it has been reconstructed by the scanner, "
"before any interpolation of any kind has taken place. You should not run this command after any "
"form of motion correction (e.g. not after dwifslpreproc). Similarly, if you intend running dwidenoise, "
"you should run denoising before this command to not alter the noise structure, "
"which would impact on dwidenoise's performance."
+ "For best results, any form of filtering performed by the scanner should be disabled, whether "
"performed in the image domain or k-space. This includes elliptic filtering and other filters that "
"are often applied to reduce Gibbs ringing artifacts. While this method can still safely be applied "
"to such data, some residual ringing artefacts may still be present in the output."
+ "Note that this method is designed to work on images acquired with full k-space coverage. "
"If this method is executed on data acquired with partial Fourier (eg. \"half-scan\") acceleration, "
"it may not fully remove all ringing artifacts, "
"and you may observe residuals of the original artifact in the partial Fourier direction. "
"Nonetheless, application of the method is still considered safe and worthwhile. "
"Users are however encouraged to acquired full-Fourier data where possible.";
ARGUMENTS
+ Argument ("in", "the input image.").type_image_in ()
+ Argument ("out", "the output image.").type_image_out ();
OPTIONS
+ Option ("axes",
"select the slice axes (default: 0,1 - i.e. x-y).")
+ Argument ("list").type_sequence_int ()
+ Option ("nshifts", "discretization of subpixel spacing (default: 20).")
+ Argument ("value").type_integer (8, 128)
+ Option ("minW", "left border of window used for TV computation (default: 1).")
+ Argument ("value").type_integer (0, 10)
+ Option ("maxW", "right border of window used for TV computation (default: 3).")
+ Argument ("value").type_integer (0, 128)
+ DataType::options();
REFERENCES
+ "Kellner, E; Dhital, B; Kiselev, V.G & Reisert, M. "
"Gibbs-ringing artifact removal based on local subvoxel-shifts. "
"Magnetic Resonance in Medicine, 2016, 76, 1574–1581.";
}
typedef double value_type;
class ComputeSlice
{ MEMALIGN (ComputeSlice)
public:
ComputeSlice (const vector<size_t>& outer_axes, const vector<size_t>& slice_axes, const int& nsh, const int& minW, const int& maxW, Image<value_type>& in, Image<value_type>& out) :
outer_axes (outer_axes),
slice_axes (slice_axes),
nsh (nsh),
minW (minW),
maxW (maxW),
in (in),
out (out),
im1 (in.size(slice_axes[0]), in.size(slice_axes[1])),
im2 (im1.rows(), im1.cols()) {
prealloc_FFT();
}
ComputeSlice (const ComputeSlice& other) :
outer_axes (other.outer_axes),
slice_axes (other.slice_axes),
nsh (other.nsh),
minW (other.minW),
maxW (other.maxW),
in (other.in),
out (other.out),
fft (),
im1 (in.size(slice_axes[0]), in.size(slice_axes[1])),
im2 (im1.rows(), im1.cols()) {
prealloc_FFT();
}
void operator() (const Iterator& pos)
{
const int X = slice_axes[0];
const int Y = slice_axes[1];
assign_pos_of (pos, outer_axes).to (in, out);
for (auto l = Loop (slice_axes) (in); l; ++l)
im1 (ssize_t(in.index(X)), ssize_t(in.index(Y))) = cdouble (in.value(), 0.0);
unring_2d ();
for (auto l = Loop (slice_axes) (out); l; ++l)
out.value() = im1 (ssize_t(out.index(X)), ssize_t(out.index(Y))).real();
}
private:
const vector<size_t>& outer_axes;
const vector<size_t>& slice_axes;
const int nsh, minW, maxW;
Image<value_type> in, out;
Eigen::FFT<double> fft;
Eigen::MatrixXcd im1, im2, shifted;
Eigen::VectorXcd v;
void prealloc_FFT () {
// needed to avoid within-thread allocations,
// which aren't thread-safe in FFTW:
#ifdef EIGEN_FFTW_DEFAULT
Eigen::VectorXcd tmp (im1.rows());
FFT (tmp);
iFFT (tmp);
tmp.resize (im1.cols());
FFT (tmp);
iFFT (tmp);
#endif
}
template <typename Derived> FORCE_INLINE void FFT (Eigen::MatrixBase<Derived>&& vec) { fft.fwd (v, vec); vec = v; }
template <typename Derived> FORCE_INLINE void FFT (Eigen::MatrixBase<Derived>& vec) { FFT (std::move (vec)); }
template <typename Derived> FORCE_INLINE void iFFT (Eigen::MatrixBase<Derived>&& vec) { fft.inv (v, vec); vec = v; }
template <typename Derived> FORCE_INLINE void iFFT (Eigen::MatrixBase<Derived>& vec) { iFFT (std::move (vec)); }
template <typename Derived> FORCE_INLINE void row_FFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.rows(); ++n) FFT (mat.row(n)); }
template <typename Derived> FORCE_INLINE void row_iFFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.rows(); ++n) iFFT (mat.row(n)); }
template <typename Derived> FORCE_INLINE void col_FFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.cols(); ++n) FFT (mat.col(n)); }
template <typename Derived> FORCE_INLINE void col_iFFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.cols(); ++n) iFFT (mat.col(n)); }
FORCE_INLINE void unring_2d ()
{
row_FFT (im1);
col_FFT (im1);
for (int k = 0; k < im1.cols(); k++) {
double ck = (1.0+cos(2.0*Math::pi*(double(k)/im1.cols())))*0.5;
for (int j = 0 ; j < im1.rows(); j++) {
double cj = (1.0+cos(2.0*Math::pi*(double(j)/im1.rows())))*0.5;
if (ck+cj != 0.0) {
im2(j,k) = im1(j,k) * cj / (ck+cj);
im1(j,k) *= ck / (ck+cj);
}
else
im1(j,k) = im2(j,k) = cdouble(0.0, 0.0);
}
}
row_iFFT (im1);
col_iFFT (im2);
unring_1d (im1);
unring_1d (im2.transpose());
im1 += im2;
}
template <typename Derived>
FORCE_INLINE void unring_1d (Eigen::MatrixBase<Derived>&& eig)
{
const int n = eig.rows();
const int numlines = eig.cols();
shifted.resize (n, 2*nsh+1);
vector<int> shifts(2*nsh+1);
shifts[0] = 0;
for (int j = 0; j < nsh; j++) {
shifts[j+1] = j+1;
shifts[1+nsh+j] = -(j+1);
}
vector<double> TV1arr(2*nsh+1);
vector<double> TV2arr(2*nsh+1);
for (int k = 0; k < numlines; k++) {
shifted.col(0) = eig.col(k);
const int maxn = (n&1) ? (n-1)/2 : n/2-1;
for (int j = 1; j < 2*nsh+1; j++) {
double phi = Math::pi*double(shifts[j])/double(n*nsh);
cdouble u (std::cos(phi), std::sin(phi));
cdouble e (1.0, 0.0);
shifted(0,j) = shifted(0,0);
if (!(n&1))
shifted(n/2,j) = cdouble(0.0, 0.0);
for (int l = 0; l < maxn; l++) {
e = u*e;
int L = l+1; shifted(L,j) = e * shifted(L,0);
L = n-1-l; shifted(L,j) = std::conj(e) * shifted(L,0);
}
}
col_iFFT (shifted);
for (int j = 0; j < 2*nsh+1; ++j) {
TV1arr[j] = 0.0;
TV2arr[j] = 0.0;
for (int t = minW; t <= maxW; t++) {
TV1arr[j] += abs (shifted((n-t)%n,j).real() - shifted((n-t-1)%n,j).real());
TV1arr[j] += abs (shifted((n-t)%n,j).imag() - shifted((n-t-1)%n,j).imag());
TV2arr[j] += abs (shifted((n+t)%n,j).real() - shifted((n+t+1)%n,j).real());
TV2arr[j] += abs (shifted((n+t)%n,j).imag() - shifted((n+t+1)%n,j).imag());
}
}
for (int l = 0; l < n; ++l) {
double minTV = std::numeric_limits<double>::max();
int minidx = 0;
for (int j = 0; j < 2*nsh+1; ++j) {
if (TV1arr[j] < minTV) {
minTV = TV1arr[j];
minidx = j;
}
if (TV2arr[j] < minTV) {
minTV = TV2arr[j];
minidx = j;
}
TV1arr[j] += abs (shifted((l-minW+1+n)%n,j).real() - shifted((l-(minW )+n)%n,j).real());
TV1arr[j] -= abs (shifted((l-maxW +n)%n,j).real() - shifted((l-(maxW+1)+n)%n,j).real());
TV2arr[j] += abs (shifted((l+maxW+1+n)%n,j).real() - shifted((l+(maxW+2)+n)%n,j).real());
TV2arr[j] -= abs (shifted((l+minW +n)%n,j).real() - shifted((l+(minW+1)+n)%n,j).real());
TV1arr[j] += abs (shifted((l-minW+1+n)%n,j).imag() - shifted((l-(minW )+n)%n,j).imag());
TV1arr[j] -= abs (shifted((l-maxW +n)%n,j).imag() - shifted((l-(maxW+1)+n)%n,j).imag());
TV2arr[j] += abs (shifted((l+maxW+1+n)%n,j).imag() - shifted((l+(maxW+2)+n)%n,j).imag());
TV2arr[j] -= abs (shifted((l+minW +n)%n,j).imag() - shifted((l+(minW+1)+n)%n,j).imag());
}
double a0r = shifted((l-1+n)%n,minidx).real();
double a1r = shifted(l,minidx).real();
double a2r = shifted((l+1+n)%n,minidx).real();
double a0i = shifted((l-1+n)%n,minidx).imag();
double a1i = shifted(l,minidx).imag();
double a2i = shifted((l+1+n)%n,minidx).imag();
double s = double(shifts[minidx])/(2.0*nsh);
if (s > 0.0)
eig(l,k) = cdouble (a1r*(1.0-s) + a0r*s, a1i*(1.0-s) + a0i*s);
else
eig(l,k) = cdouble (a1r*(1.0+s) - a2r*s, a1i*(1.0+s) - a2i*s);
}
}
}
template <typename Derived>
FORCE_INLINE void unring_1d (Eigen::MatrixBase<Derived>& eig) { unring_1d (std::move (eig)); }
};
void run ()
{
const int nshifts = App::get_option_value ("nshifts", 20);
const int minW = App::get_option_value ("minW", 1);
const int maxW = App::get_option_value ("maxW", 3);
if (minW >= maxW)
throw Exception ("minW must be smaller than maxW");
auto in = Image<value_type>::open (argument[0]);
Header header (in);
header.datatype() = DataType::from_command_line (DataType::Float32);
auto out = Image<value_type>::create (argument[1], header);
vector<size_t> slice_axes = { 0, 1 };
auto opt = get_options ("axes");
const bool axes_set_manually = opt.size();
if (opt.size()) {
vector<uint32_t> axes = parse_ints<uint32_t> (opt[0][0]);
if (axes.size() != 2)
throw Exception ("slice axes must be specified as a comma-separated 2-vector");
if (size_t(std::max (axes[0], axes[1])) >= header.ndim())
throw Exception ("slice axes must be within the dimensionality of the image");
if (axes[0] == axes[1])
throw Exception ("two independent slice axes must be specified");
slice_axes = { size_t(axes[0]), size_t(axes[1]) };
}
auto slice_encoding_it = header.keyval().find ("SliceEncodingDirection");
if (slice_encoding_it != header.keyval().end()) {
try {
const Metadata::BIDS::axis_vector_type slice_encoding_axis_onehot = Metadata::BIDS::axisid2vector (slice_encoding_it->second);
vector<size_t> auto_slice_axes = { 0, 0 };
if (slice_encoding_axis_onehot[0])
auto_slice_axes = { 1, 2 };
else if (slice_encoding_axis_onehot[1])
auto_slice_axes = { 0, 2 };
else if (slice_encoding_axis_onehot[2])
auto_slice_axes = { 0, 1 };
else
throw Exception ("Fatal error: Invalid slice axis one-hot encoding [ " + str(slice_encoding_axis_onehot.transpose()) + " ]");
if (axes_set_manually) {
if (slice_axes == auto_slice_axes) {
INFO ("User's manual selection of within-slice axes consistent with \"SliceEncodingDirection\" field in image header");
} else {
WARN ("Within-slice axes set using -axes option will be used, but is inconsistent with SliceEncodingDirection field present in image header (" + slice_encoding_it->second + ")");
}
} else {
if (slice_axes == auto_slice_axes) {
INFO ("\"SliceEncodingDirection\" field in image header is consistent with default selection of first two axes as being within-slice");
} else {
slice_axes = auto_slice_axes;
CONSOLE ("Using axes { " + str(slice_axes[0]) + ", " + str(slice_axes[1]) + " } for Gibbs ringing removal based on \"SliceEncodingDirection\" field in image header");
}
}
} catch (...) {
WARN ("Invalid value for field \"SliceEncodingDirection\" in image header (" + slice_encoding_it->second + "); ignoring");
}
}
// build vector of outer axes:
vector<size_t> outer_axes (header.ndim());
std::iota (outer_axes.begin(), outer_axes.end(), 0);
for (const auto axis : slice_axes) {
auto it = std::find (outer_axes.begin(), outer_axes.end(), axis);
if (it == outer_axes.end())
throw Exception ("slice axis out of range!");
outer_axes.erase (it);
}
ThreadedLoop ("performing Gibbs ringing removal", in, outer_axes, slice_axes)
.run_outer (ComputeSlice (outer_axes, slice_axes, nshifts, minW, maxW, in, out));
}
|