File: mrdegibbs.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (384 lines) | stat: -rw-r--r-- 14,457 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include <unsupported/Eigen/FFT>

#include "axes.h"
#include "command.h"
#include "image.h"
#include "progressbar.h"
#include "types.h"
#include "algo/threaded_loop.h"
#include "metadata/bids.h"
#include <numeric>

using namespace MR;
using namespace App;

void usage ()
{
  AUTHOR = "Ben Jeurissen (ben.jeurissen@uantwerpen.be) & J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Remove Gibbs Ringing Artifacts";

  DESCRIPTION
    + "This application attempts to remove Gibbs ringing artefacts from MRI images using the method "
    "of local subvoxel-shifts proposed by Kellner et al. (see reference below for details)."

    + "This command is designed to run on data directly after it has been reconstructed by the scanner, "
    "before any interpolation of any kind has taken place. You should not run this command after any "
    "form of motion correction (e.g. not after dwifslpreproc). Similarly, if you intend running dwidenoise, "
    "you should run denoising before this command to not alter the noise structure, "
    "which would impact on dwidenoise's performance."

    + "For best results, any form of filtering performed by the scanner should be disabled, whether "
    "performed in the image domain or k-space. This includes elliptic filtering and other filters that "
    "are often applied to reduce Gibbs ringing artifacts. While this method can still safely be applied "
    "to such data, some residual ringing artefacts may still be present in the output."

    + "Note that this method is designed to work on images acquired with full k-space coverage. "
    "If this method is executed on data acquired with partial Fourier (eg. \"half-scan\") acceleration, "
    "it may not fully remove all ringing artifacts, "
    "and you may observe residuals of the original artifact in the partial Fourier direction. "
    "Nonetheless, application of the method is still considered safe and worthwhile. "
    "Users are however encouraged to acquired full-Fourier data where possible.";


  ARGUMENTS
  + Argument ("in", "the input image.").type_image_in ()
  + Argument ("out", "the output image.").type_image_out ();


  OPTIONS
  + Option ("axes",
            "select the slice axes (default: 0,1 - i.e. x-y).")
  +   Argument ("list").type_sequence_int ()

  + Option ("nshifts", "discretization of subpixel spacing (default: 20).")
  +   Argument ("value").type_integer (8, 128)

  + Option ("minW", "left border of window used for TV computation (default: 1).")
  +   Argument ("value").type_integer (0, 10)

  + Option ("maxW", "right border of window used for TV computation (default: 3).")
  +   Argument ("value").type_integer (0, 128)

  + DataType::options();


  REFERENCES
    + "Kellner, E; Dhital, B; Kiselev, V.G & Reisert, M. "
    "Gibbs-ringing artifact removal based on local subvoxel-shifts. "
    "Magnetic Resonance in Medicine, 2016, 76, 1574–1581.";

}


typedef double value_type;




class ComputeSlice
{ MEMALIGN (ComputeSlice)
  public:
    ComputeSlice (const vector<size_t>& outer_axes, const vector<size_t>& slice_axes, const int& nsh, const int& minW, const int& maxW, Image<value_type>& in, Image<value_type>& out) :
      outer_axes (outer_axes),
      slice_axes (slice_axes),
      nsh (nsh),
      minW (minW),
      maxW (maxW),
      in (in),
      out (out),
      im1 (in.size(slice_axes[0]), in.size(slice_axes[1])),
      im2 (im1.rows(), im1.cols()) {
        prealloc_FFT();
      }

    ComputeSlice (const ComputeSlice& other) :
      outer_axes (other.outer_axes),
      slice_axes (other.slice_axes),
      nsh (other.nsh),
      minW (other.minW),
      maxW (other.maxW),
      in (other.in),
      out (other.out),
      fft (),
      im1 (in.size(slice_axes[0]), in.size(slice_axes[1])),
      im2 (im1.rows(), im1.cols()) {
        prealloc_FFT();
      }


    void operator() (const Iterator& pos)
    {
      const int X = slice_axes[0];
      const int Y = slice_axes[1];
      assign_pos_of (pos, outer_axes).to (in, out);

      for (auto l = Loop (slice_axes) (in); l; ++l)
        im1 (ssize_t(in.index(X)), ssize_t(in.index(Y))) = cdouble (in.value(), 0.0);

      unring_2d ();

      for (auto l = Loop (slice_axes) (out); l; ++l)
        out.value() = im1 (ssize_t(out.index(X)), ssize_t(out.index(Y))).real();
    }

  private:
    const vector<size_t>& outer_axes;
    const vector<size_t>& slice_axes;
    const int nsh, minW, maxW;
    Image<value_type> in, out;
    Eigen::FFT<double> fft;
    Eigen::MatrixXcd im1, im2, shifted;
    Eigen::VectorXcd v;

    void prealloc_FFT () {
      // needed to avoid within-thread allocations,
      // which aren't thread-safe in FFTW:
#ifdef EIGEN_FFTW_DEFAULT
      Eigen::VectorXcd tmp (im1.rows());
      FFT (tmp);
      iFFT (tmp);
      tmp.resize (im1.cols());
      FFT (tmp);
      iFFT (tmp);
#endif
    }

    template <typename Derived> FORCE_INLINE void FFT      (Eigen::MatrixBase<Derived>&& vec) { fft.fwd (v, vec); vec = v; }
    template <typename Derived> FORCE_INLINE void FFT      (Eigen::MatrixBase<Derived>& vec) { FFT (std::move (vec)); }
    template <typename Derived> FORCE_INLINE void iFFT     (Eigen::MatrixBase<Derived>&& vec) { fft.inv (v, vec); vec = v; }
    template <typename Derived> FORCE_INLINE void iFFT     (Eigen::MatrixBase<Derived>& vec) { iFFT (std::move (vec)); }
    template <typename Derived> FORCE_INLINE void row_FFT  (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.rows(); ++n)  FFT (mat.row(n)); }
    template <typename Derived> FORCE_INLINE void row_iFFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.rows(); ++n) iFFT (mat.row(n)); }
    template <typename Derived> FORCE_INLINE void col_FFT  (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.cols(); ++n)  FFT (mat.col(n)); }
    template <typename Derived> FORCE_INLINE void col_iFFT (Eigen::MatrixBase<Derived>& mat) { for (auto n = 0; n < mat.cols(); ++n) iFFT (mat.col(n)); }



    FORCE_INLINE void unring_2d ()
    {
      row_FFT (im1);
      col_FFT (im1);

      for (int k = 0; k < im1.cols(); k++) {
        double ck = (1.0+cos(2.0*Math::pi*(double(k)/im1.cols())))*0.5;
        for (int j = 0 ; j < im1.rows(); j++) {
          double cj = (1.0+cos(2.0*Math::pi*(double(j)/im1.rows())))*0.5;

          if (ck+cj != 0.0) {
            im2(j,k) = im1(j,k) * cj / (ck+cj);
            im1(j,k) *= ck / (ck+cj);
          }
          else
            im1(j,k) = im2(j,k) = cdouble(0.0, 0.0);
        }
      }

      row_iFFT (im1);
      col_iFFT (im2);

      unring_1d (im1);
      unring_1d (im2.transpose());

      im1 += im2;
    }





    template <typename Derived>
      FORCE_INLINE void unring_1d (Eigen::MatrixBase<Derived>&& eig)
      {
        const int n = eig.rows();
        const int numlines = eig.cols();
        shifted.resize (n, 2*nsh+1);

        vector<int> shifts(2*nsh+1);
        shifts[0] = 0;
        for (int j = 0; j < nsh; j++) {
          shifts[j+1] = j+1;
          shifts[1+nsh+j] = -(j+1);
        }

        vector<double> TV1arr(2*nsh+1);
        vector<double> TV2arr(2*nsh+1);

        for (int k = 0; k < numlines; k++) {
          shifted.col(0) = eig.col(k);

          const int maxn = (n&1) ? (n-1)/2 : n/2-1;

          for (int j = 1; j < 2*nsh+1; j++) {
            double phi = Math::pi*double(shifts[j])/double(n*nsh);
            cdouble u (std::cos(phi), std::sin(phi));
            cdouble e (1.0, 0.0);
            shifted(0,j) = shifted(0,0);

            if (!(n&1))
              shifted(n/2,j) = cdouble(0.0, 0.0);

            for (int l = 0; l < maxn; l++) {
              e = u*e;
              int L = l+1; shifted(L,j) = e * shifted(L,0);
              L = n-1-l;   shifted(L,j) = std::conj(e) * shifted(L,0);
            }
          }


          col_iFFT (shifted);

          for (int j = 0; j < 2*nsh+1; ++j) {
            TV1arr[j] = 0.0;
            TV2arr[j] = 0.0;
            for (int t = minW; t <= maxW; t++) {
              TV1arr[j] += abs (shifted((n-t)%n,j).real() - shifted((n-t-1)%n,j).real());
              TV1arr[j] += abs (shifted((n-t)%n,j).imag() - shifted((n-t-1)%n,j).imag());
              TV2arr[j] += abs (shifted((n+t)%n,j).real() - shifted((n+t+1)%n,j).real());
              TV2arr[j] += abs (shifted((n+t)%n,j).imag() - shifted((n+t+1)%n,j).imag());
            }
          }

          for (int l = 0; l < n; ++l) {
            double minTV = std::numeric_limits<double>::max();
            int minidx = 0;
            for (int j = 0; j < 2*nsh+1; ++j) {

              if (TV1arr[j] < minTV) {
                minTV = TV1arr[j];
                minidx = j;
              }
              if (TV2arr[j] < minTV) {
                minTV = TV2arr[j];
                minidx = j;
              }

              TV1arr[j] += abs (shifted((l-minW+1+n)%n,j).real() - shifted((l-(minW  )+n)%n,j).real());
              TV1arr[j] -= abs (shifted((l-maxW  +n)%n,j).real() - shifted((l-(maxW+1)+n)%n,j).real());
              TV2arr[j] += abs (shifted((l+maxW+1+n)%n,j).real() - shifted((l+(maxW+2)+n)%n,j).real());
              TV2arr[j] -= abs (shifted((l+minW  +n)%n,j).real() - shifted((l+(minW+1)+n)%n,j).real());

              TV1arr[j] += abs (shifted((l-minW+1+n)%n,j).imag() - shifted((l-(minW  )+n)%n,j).imag());
              TV1arr[j] -= abs (shifted((l-maxW  +n)%n,j).imag() - shifted((l-(maxW+1)+n)%n,j).imag());
              TV2arr[j] += abs (shifted((l+maxW+1+n)%n,j).imag() - shifted((l+(maxW+2)+n)%n,j).imag());
              TV2arr[j] -= abs (shifted((l+minW  +n)%n,j).imag() - shifted((l+(minW+1)+n)%n,j).imag());
            }

            double a0r = shifted((l-1+n)%n,minidx).real();
            double a1r = shifted(l,minidx).real();
            double a2r = shifted((l+1+n)%n,minidx).real();
            double a0i = shifted((l-1+n)%n,minidx).imag();
            double a1i = shifted(l,minidx).imag();
            double a2i = shifted((l+1+n)%n,minidx).imag();
            double s = double(shifts[minidx])/(2.0*nsh);

            if (s > 0.0)
              eig(l,k) = cdouble (a1r*(1.0-s) + a0r*s, a1i*(1.0-s) + a0i*s);
            else
              eig(l,k) = cdouble (a1r*(1.0+s) - a2r*s, a1i*(1.0+s) - a2i*s);
          }
        }
      }

    template <typename Derived>
      FORCE_INLINE void unring_1d (Eigen::MatrixBase<Derived>& eig) { unring_1d (std::move (eig)); }

};







void run ()
{
  const int nshifts = App::get_option_value ("nshifts", 20);
  const int minW = App::get_option_value ("minW", 1);
  const int maxW = App::get_option_value ("maxW", 3);

  if (minW >= maxW)
    throw Exception ("minW must be smaller than maxW");

  auto in = Image<value_type>::open (argument[0]);
  Header header (in);

  header.datatype() = DataType::from_command_line (DataType::Float32);
  auto out = Image<value_type>::create (argument[1], header);

  vector<size_t> slice_axes = { 0, 1 };
  auto opt = get_options ("axes");
  const bool axes_set_manually = opt.size();
  if (opt.size()) {
    vector<uint32_t> axes = parse_ints<uint32_t> (opt[0][0]);
    if (axes.size() != 2)
      throw Exception ("slice axes must be specified as a comma-separated 2-vector");
    if (size_t(std::max (axes[0], axes[1])) >= header.ndim())
      throw Exception ("slice axes must be within the dimensionality of the image");
    if (axes[0] == axes[1])
      throw Exception ("two independent slice axes must be specified");
    slice_axes = { size_t(axes[0]), size_t(axes[1]) };
  }

  auto slice_encoding_it = header.keyval().find ("SliceEncodingDirection");
  if (slice_encoding_it != header.keyval().end()) {
    try {
      const Metadata::BIDS::axis_vector_type slice_encoding_axis_onehot = Metadata::BIDS::axisid2vector (slice_encoding_it->second);
      vector<size_t> auto_slice_axes = { 0, 0 };
      if (slice_encoding_axis_onehot[0])
        auto_slice_axes = { 1, 2 };
      else if (slice_encoding_axis_onehot[1])
        auto_slice_axes = { 0, 2 };
      else if (slice_encoding_axis_onehot[2])
        auto_slice_axes = { 0, 1 };
      else
        throw Exception ("Fatal error: Invalid slice axis one-hot encoding [ " + str(slice_encoding_axis_onehot.transpose()) + " ]");
      if (axes_set_manually) {
        if (slice_axes == auto_slice_axes) {
          INFO ("User's manual selection of within-slice axes consistent with \"SliceEncodingDirection\" field in image header");
        } else {
          WARN ("Within-slice axes set using -axes option will be used, but is inconsistent with SliceEncodingDirection field present in image header (" + slice_encoding_it->second + ")");
        }
      } else {
        if (slice_axes == auto_slice_axes) {
          INFO ("\"SliceEncodingDirection\" field in image header is consistent with default selection of first two axes as being within-slice");
        } else {
          slice_axes = auto_slice_axes;
          CONSOLE ("Using axes { " + str(slice_axes[0]) + ", " + str(slice_axes[1]) + " } for Gibbs ringing removal based on \"SliceEncodingDirection\" field in image header");
        }
      }
    } catch (...) {
      WARN ("Invalid value for field \"SliceEncodingDirection\" in image header (" + slice_encoding_it->second + "); ignoring");
    }
  }

  // build vector of outer axes:
  vector<size_t> outer_axes (header.ndim());
  std::iota (outer_axes.begin(), outer_axes.end(), 0);
  for (const auto axis : slice_axes) {
    auto it = std::find (outer_axes.begin(), outer_axes.end(), axis);
    if (it == outer_axes.end())
      throw Exception ("slice axis out of range!");
    outer_axes.erase (it);
  }

  ThreadedLoop ("performing Gibbs ringing removal", in, outer_axes, slice_axes)
    .run_outer (ComputeSlice (outer_axes, slice_axes, nshifts, minW, maxW, in, out));
}