File: mrfilter.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (310 lines) | stat: -rw-r--r-- 11,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include <complex>

#include "command.h"
#include "image.h"
#include "filter/base.h"
#include "filter/fft.h"
#include "filter/gradient.h"
#include "filter/normalise.h"
#include "filter/median.h"
#include "filter/smooth.h"
#include "filter/zclean.h"


using namespace MR;
using namespace App;


const char* filters[] = { "fft", "gradient", "median", "smooth", "normalise", "zclean", NULL };


const OptionGroup FFTOption = OptionGroup ("Options for FFT filter")

  + Option ("axes", "the axes along which to apply the Fourier Transform. "
            "By default, the transform is applied along the three spatial axes. "
            "Provide as a comma-separate list of axis indices.")
    + Argument ("list").type_sequence_int()

  + Option ("inverse", "apply the inverse FFT")

  + Option ("magnitude", "output a magnitude image rather than a complex-valued image")

  + Option ("centre_zero", "re-arrange the FFT results so that the zero-frequency component "
            "appears in the centre of the image, rather than at the edges");



const OptionGroup GradientOption = OptionGroup ("Options for gradient filter")

  + Option ("stdev", "the standard deviation of the Gaussian kernel used to "
            "smooth the input image (in mm). The image is smoothed to reduced large "
            "spurious gradients caused by noise. Use this option to override "
            "the default stdev of 1 voxel. This can be specified either as a single "
            "value to be used for all 3 axes, or as a comma-separated list of "
            "3 values, one for each axis.")
  + Argument ("sigma").type_sequence_float()

  + Option ("magnitude", "output the gradient magnitude, rather "
            "than the default x,y,z components")

  + Option ("scanner", "define the gradient with respect to the scanner coordinate "
            "frame of reference.");


const OptionGroup MedianOption = OptionGroup ("Options for median filter")

  + Option ("extent", "specify extent of median filtering neighbourhood in voxels. "
        "This can be specified either as a single value to be used for all 3 axes, "
        "or as a comma-separated list of 3 values, one for each axis (default: 3x3x3).")
    + Argument ("size").type_sequence_int();

const OptionGroup NormaliseOption = OptionGroup ("Options for normalisation filter")

  + Option ("extent", "specify extent of normalisation filtering neighbourhood in voxels. "
        "This can be specified either as a single value to be used for all 3 axes, "
        "or as a comma-separated list of 3 values, one for each axis (default: 3x3x3).")
    + Argument ("size").type_sequence_int();


const OptionGroup SmoothOption = OptionGroup ("Options for smooth filter")

  + Option ("stdev", "apply Gaussian smoothing with the specified standard deviation. "
            "The standard deviation is defined in mm (Default 1 voxel). "
            "This can be specified either as a single value to be used for all axes, "
            "or as a comma-separated list of the stdev for each axis.")
  + Argument ("mm").type_sequence_float()

  + Option ("fwhm", "apply Gaussian smoothing with the specified full-width half maximum. "
            "The FWHM is defined in mm (Default 1 voxel * 2.3548). "
            "This can be specified either as a single value to be used for all axes, "
            "or as a comma-separated list of the FWHM for each axis.")
  + Argument ("mm").type_sequence_float()

  + Option ("extent", "specify the extent (width) of kernel size in voxels. "
            "This can be specified either as a single value to be used for all axes, "
            "or as a comma-separated list of the extent for each axis. "
            "The default extent is 2 * ceil(2.5 * stdev / voxel_size) - 1.")
  + Argument ("voxels").type_sequence_int();

const OptionGroup ZcleanOption = OptionGroup ("Options for zclean filter")
+ Option ("zupper", "define high intensity outliers: default: 2.5")
  + Argument ("num").type_float(0.1, std::numeric_limits<float>::infinity())
+ Option ("zlower", "define low intensity outliers: default: 2.5")
  + Argument ("num").type_float(0.1, std::numeric_limits<float>::infinity())
+ Option ("bridge", "number of voxels to gap to fill holes in mask: default: 4")
  + Argument ("num").type_integer(0)
+ Option ("maskin", "initial mask that defines the maximum spatial extent and the region from "
          "which to smaple the intensity range.")
  + Argument ("image").type_image_in()
+ Option ("maskout", "Output a refined mask based on a spatially coherent region with normal intensity range.")
  + Argument ("image").type_image_out();


void usage ()
{
  AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au), David Raffelt (david.raffelt@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Perform filtering operations on 3D / 4D MR images";

  DESCRIPTION
  + "The available filters are: fft, gradient, median, smooth, normalise, zclean."
  + "Each filter has its own unique set of optional parameters."
  + "For 4D images, each 3D volume is processed independently.";

  ARGUMENTS
  + Argument ("input",  "the input image.").type_image_in ()
  + Argument ("filter", "the type of filter to be applied").type_choice (filters)
  + Argument ("output", "the output image.").type_image_out ();

  OPTIONS
  + FFTOption
  + GradientOption
  + MedianOption
  + NormaliseOption
  + SmoothOption
  + ZcleanOption
  + Stride::Options;
}


void run () {

  const size_t filter_index = argument[1];

  switch (filter_index) {

    // FFT
    case 0:
    {
      // FIXME Had to use cdouble throughout; seems to fail at compile time even trying to
      //   convert between cfloat and cdouble...
      auto input = Image<cdouble>::open (argument[0]).with_direct_io();
      Filter::FFT filter (input, get_options ("inverse").size());

      auto opt = get_options ("axes");
      if (opt.size())
        filter.set_axes (parse_ints<uint32_t> (opt[0][0]));
      filter.set_centre_zero (get_options ("centre_zero").size());
      Stride::set_from_command_line (filter);
      filter.set_message (std::string("applying FFT filter to image " + std::string(argument[0])));

      if (get_options ("magnitude").size()) {
        auto temp = Image<cdouble>::scratch (filter, "complex FFT result");
        filter (input, temp);
        filter.datatype() = DataType::Float32;
        auto output = Image<float>::create (argument[2], filter);
        for (auto l = Loop (output) (temp, output); l; ++l)
          output.value() = abs (cdouble(temp.value()));
      } else {
        auto output = Image<cdouble>::create (argument[2], filter);
        filter (input, output);
      }
      break;
    }

    // Gradient
    case 1:
    {
      auto input = Image<float>::open (argument[0]);
      Filter::Gradient filter (input, get_options ("magnitude").size());

      vector<default_type> stdev;
      auto opt = get_options ("stdev");
      if (opt.size()) {
        stdev = parse_floats (opt[0][0]);
        for (size_t i = 0; i < stdev.size(); ++i)
          if (stdev[i] < 0.0)
            throw Exception ("the Gaussian stdev values cannot be negative");
        if (stdev.size() != 1 && stdev.size() != 3)
          throw Exception ("unexpected number of elements specified in Gaussian stdev");
      } else {
        stdev.resize (3, 0.0);
        for (size_t dim = 0; dim != 3; ++dim)
          stdev[dim] = filter.spacing (dim);
      }
      filter.compute_wrt_scanner (get_options ("scanner").size() ? true : false);
      filter.set_message (std::string("applying ") + std::string(argument[1]) + " filter to image " + std::string(argument[0]));
      Stride::set_from_command_line (filter);
      filter.set_stdev (stdev);
      auto output = Image<float>::create (argument[2], filter);
      filter (input, output);
    break;
    }

    // Median
    case 2:
    {
      auto input = Image<float>::open (argument[0]);
      Filter::Median filter (input);

      auto opt = get_options ("extent");
      if (opt.size())
        filter.set_extent (parse_ints<uint32_t> (opt[0][0]));
      filter.set_message (std::string("applying ") + std::string(argument[1]) + " filter to image " + std::string(argument[0]));
      Stride::set_from_command_line (filter);

      auto output = Image<float>::create (argument[2], filter);
      filter (input, output);
      break;
     }

    // Smooth
    case 3:
    {
      auto input = Image<float>::open (argument[0]);
      Filter::Smooth filter (input);

      auto opt = get_options ("stdev");
      const bool stdev_supplied = opt.size();
      if (stdev_supplied)
        filter.set_stdev (parse_floats (opt[0][0]));
      opt = get_options ("fwhm");
      if (opt.size()) {
        if (stdev_supplied)
          throw Exception ("the stdev and FWHM options are mutually exclusive.");
        vector<default_type> stdevs = parse_floats((opt[0][0]));
        for (size_t d = 0; d < stdevs.size(); ++d)
          stdevs[d] = stdevs[d] / 2.3548;  //convert FWHM to stdev
        filter.set_stdev (stdevs);
      }
      opt = get_options ("extent");
      if (opt.size())
        filter.set_extent (parse_ints<uint32_t> (opt[0][0]));
      filter.set_message (std::string("applying ") + std::string(argument[1]) + " filter to image " + std::string(argument[0]));
      Stride::set_from_command_line (filter);

      auto output = Image<float>::create (argument[2], filter);
      threaded_copy (input, output);
      filter (output);
      break;
    }

    // Normalisation
    case 4:
    {
      auto input = Image<float>::open (argument[0]);
      Filter::Normalise filter (input);

      auto opt = get_options ("extent");
      if (opt.size())
        filter.set_extent (parse_ints<uint32_t> (opt[0][0]));
      filter.set_message (std::string("applying ") + std::string(argument[1]) + " filter to image " + std::string(argument[0]) + "...");
      Stride::set_from_command_line (filter);

      auto output = Image<float>::create (argument[2], filter);
      filter (input, output);
      break;
     }

    // Zclean
    case 5:
    {
      auto input = Image<float>::open (argument[0]);
      Filter::ZClean filter (input);

      auto opt = get_options ("maskin");
      if (!opt.size())
        throw Exception (std::string(argument[1]) + " filter requires initial mask");
      Image<float> maskin = Image<float>::open (opt[0][0]);
      check_dimensions (maskin, input, 0, 3);

      filter.set_message (std::string("applying ") + std::string(argument[1]) + " filter to image " + std::string(argument[0]) + "...");
      Stride::set_from_command_line (filter);

      filter.set_voxels_to_bridge (get_option_value ("bridge", 4));
      float zlower = get_option_value ("zlower", 2.5);
      float zupper = get_option_value ("zupper", 2.5);
      filter.set_zlim (zlower, zupper);

      auto output = Image<float>::create (argument[2], filter);
      filter (input, maskin, output);

      opt = get_options ("maskout");
      if (opt.size()) {
        auto maskout = Image<bool>::create (opt[0][0], filter.mask);
        threaded_copy (filter.mask, maskout);
      }
      break;
    }

    default:
      assert (0);
      break;
  }
}