1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include <algorithm>
#include <cmath>
#include "command.h"
#include "datatype.h"
#include "header.h"
#include "image.h"
#include "adapter/replicate.h"
#include "algo/histogram.h"
#include "algo/loop.h"
using namespace MR;
using namespace App;
const char* choices[] = { "scale", "linear", "nonlinear", nullptr };
void usage () {
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Modify the intensities of one image to match the histogram of another";
ARGUMENTS
+ Argument ("type", "type of histogram matching to perform; options are: " + join(choices, ",")).type_choice (choices)
+ Argument ("input", "the input image to be modified").type_image_in ()
+ Argument ("target", "the input image from which to derive the target histogram").type_image_in()
+ Argument ("output", "the output image").type_image_out();
OPTIONS
+ OptionGroup ("Image masking options")
+ Option ("mask_input", "only generate input histogram based on a specified binary mask image")
+ Argument ("image").type_image_in ()
+ Option ("mask_target", "only generate target histogram based on a specified binary mask image")
+ Argument ("image").type_image_in ()
+ OptionGroup ("Non-linear histogram matching options")
+ Option ("bins", "the number of bins to use to generate the histograms")
+ Argument ("num").type_integer (2);
REFERENCES
+ "* If using inverse contrast normalization for inter-modal (DWI - T1) registration:\n"
"Bhushan, C.; Haldar, J. P.; Choi, S.; Joshi, A. A.; Shattuck, D. W. & Leahy, R. M. "
"Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization. "
"NeuroImage, 2015, 115, 269-280";
}
void match_linear (Image<float>& input,
Image<float>& target,
Image<bool>& mask_input,
Image<bool>& mask_target,
const bool estimate_intercept)
{
vector<float> input_data, target_data;
{
ProgressBar progress ("Loading & sorting image data", 4);
auto fill = [] (Image<float>& image, Image<bool>& mask) {
vector<float> data;
if (mask.valid()) {
Adapter::Replicate<Image<bool>> mask_replicate (mask, image);
for (auto l = Loop(image) (image, mask_replicate); l; ++l) {
if (mask_replicate.value() && std::isfinite (static_cast<float>(image.value())))
data.push_back (image.value());
}
} else {
for (auto l = Loop(image) (image); l; ++l) {
if (std::isfinite (static_cast<float>(image.value())))
data.push_back (image.value());
}
}
return data;
};
input_data = fill (input, mask_input);
++progress;
target_data = fill (target, mask_target);
++progress;
std::sort (input_data.begin(), input_data.end());
++progress;
std::sort (target_data.begin(), target_data.end());
}
// Ax=b
// A: Input data
// x: Model parameters; in the "scale" case, it's a single multiplier; if "linear", include a column of ones and estimate an intercept
// b: Output data (or actually, interpolated histogram-matched output data)
Eigen::Matrix<default_type, Eigen::Dynamic, Eigen::Dynamic> input_matrix (input_data.size(), estimate_intercept ? 2 : 1);
Eigen::Matrix<default_type, Eigen::Dynamic, 1> output_vector (input_data.size());
for (size_t input_index = 0; input_index != input_data.size()-1; ++input_index) {
input_matrix(input_index, 0) = input_data[input_index];
const default_type output_position = (target_data.size()-1) * (default_type(input_index) / default_type(input_data.size()-1));
const size_t target_index_lower = std::floor (output_position);
const default_type mu = output_position - default_type(target_index_lower);
output_vector[input_index] = ((1.0-mu)*target_data[target_index_lower]) + (mu*target_data[target_index_lower+1]);
}
input_matrix(input_data.size()-1, 0) = input_data.back();
output_vector[input_data.size()-1] = target_data.back();
if (estimate_intercept)
input_matrix.col(1).fill (1.0f);
auto parameters = (input_matrix.transpose() * input_matrix).llt().solve(input_matrix.transpose() * output_vector).eval();
Header H (input);
H.datatype() = DataType::Float32;
H.datatype().set_byte_order_native();
H.keyval()["mrhistmatch_scale"] = str<float>(parameters[0]);
if (estimate_intercept) {
CONSOLE ("Estimated linear transform is: " + str(parameters[0]) + "x + " + str(parameters[1]));
H.keyval()["mrhistmatch_offset"] = str<float>(parameters[1]);
auto output = Image<float>::create (argument[3], H);
for (auto l = Loop("Writing output image data", input) (input, output); l; ++l) {
if (std::isfinite(static_cast<float>(input.value()))) {
output.value() = parameters[0]*input.value() + parameters[1];
} else {
output.value() = input.value();
}
}
} else {
CONSOLE ("Estimated scale factor is " + str(parameters[0]));
auto output = Image<float>::create (argument[3], H);
for (auto l = Loop("Writing output image data", input) (input, output); l; ++l) {
if (std::isfinite(static_cast<float>(input.value()))) {
output.value() = input.value() * parameters[0];
} else {
output.value() = input.value();
}
}
}
}
void match_nonlinear (Image<float>& input,
Image<float>& target,
Image<bool>& mask_input,
Image<bool>& mask_target,
const size_t nbins)
{
Algo::Histogram::Calibrator calib_input (nbins, true);
Algo::Histogram::calibrate (calib_input, input, mask_input);
INFO ("Input histogram ranges from " + str(calib_input.get_min()) + " to " + str(calib_input.get_max()) + "; using " + str(calib_input.get_num_bins()) + " bins");
Algo::Histogram::Data hist_input = Algo::Histogram::generate (calib_input, input, mask_input);
Algo::Histogram::Calibrator calib_target (nbins, true);
Algo::Histogram::calibrate (calib_target, target, mask_target);
INFO ("Target histogram ranges from " + str(calib_target.get_min()) + " to " + str(calib_target.get_max()) + "; using " + str(calib_target.get_num_bins()) + " bins");
Algo::Histogram::Data hist_target = Algo::Histogram::generate (calib_target, target, mask_target);
// Non-linear intensity mapping determined within this class
Algo::Histogram::Matcher matcher (hist_input, hist_target);
Header H (input);
H.datatype() = DataType::Float32;
H.datatype().set_byte_order_native();
auto output = Image<float>::create (argument[3], H);
for (auto l = Loop("Writing output data", input) (input, output); l; ++l) {
if (std::isfinite (static_cast<float>(input.value()))) {
output.value() = matcher (input.value());
} else {
output.value() = input.value();
}
}
}
void run ()
{
auto input = Image<float>::open (argument[1]);
auto target = Image<float>::open (argument[2]);
Image<bool> mask_input, mask_target;
auto opt = get_options ("mask_input");
if (opt.size()) {
mask_input = Image<bool>::open (opt[0][0]);
check_dimensions (input, mask_input, 0, 3);
}
opt = get_options ("mask_target");
if (opt.size()) {
mask_target = Image<bool>::open (opt[0][0]);
check_dimensions (target, mask_target, 0, 3);
}
switch (int(argument[0])) {
case 0: // Scale
match_linear (input, target, mask_input, mask_target, false);
break;
case 1: // Linear
match_linear (input, target, mask_input, mask_target, true);
break;
case 2: // Non-linear
match_nonlinear (input, target, mask_input, mask_target, get_option_value ("bins", 0));
break;
default:
throw Exception ("Undefined histogram matching type");
}
}
|