1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "image.h"
#include "image_helpers.h"
#include "filter/reslice.h"
#include "interp/cubic.h"
#include "transform.h"
#include "registration/multi_contrast.h"
#include "registration/linear.h"
#include "registration/nonlinear.h"
#include "registration/metric/demons.h"
#include "registration/metric/mean_squared.h"
#include "registration/metric/difference_robust.h"
#include "registration/metric/local_cross_correlation.h"
#include "registration/transform/affine.h"
#include "registration/transform/rigid.h"
#include "dwi/directions/predefined.h"
#include "math/average_space.h"
#include "math/SH.h"
#include "math/sphere.h"
#include "transform.h"
#include "file/nifti_utils.h"
using namespace MR;
using namespace App;
const char* transformation_choices[] = { "rigid", "affine", "nonlinear", "rigid_affine", "rigid_nonlinear", "affine_nonlinear", "rigid_affine_nonlinear", NULL };
const OptionGroup multiContrastOptions =
OptionGroup ("Multi-contrast options")
+ Option ("mc_weights", "relative weight of images used for multi-contrast registration. Default: 1.0 (equal weighting)")
+ Argument ("weights").type_sequence_float ();
void usage ()
{
AUTHOR = "David Raffelt (david.raffelt@florey.edu.au) & Max Pietsch (maximilian.pietsch@kcl.ac.uk)";
SYNOPSIS = "Register two images together using a symmetric rigid, affine or non-linear transformation model";
DESCRIPTION
+ "By default this application will perform an affine, followed by non-linear registration."
+ "FOD registration (with apodised point spread reorientation) will be performed by default if the number of volumes "
"in the 4th dimension equals the number of coefficients in an antipodally symmetric spherical harmonic series (e.g. 6, 15, 28 etc). "
"The -no_reorientation option can be used to force reorientation off if required."
// TODO link to 5D warp file format documentation
+ "Non-linear registration computes warps to map from both image1->image2 and image2->image1. "
"Similar to Avants (2008) Med Image Anal. 12(1): 26–41, registration is performed by matching both the image1 and image2 in a 'midway space'. "
"Warps can be saved as two deformation fields that map directly between image1->image2 and image2->image1, or if using -nl_warp_full as a single 5D file "
"that stores all 4 warps image1->mid->image2, and image2->mid->image1. The 5D warp format stores x,y,z deformations in the 4th dimension, and uses the 5th dimension "
"to index the 4 warps. The affine transforms estimated (to midway space) are also stored as comments in the image header. The 5D warp file can be used to reinitialise "
"subsequent registrations, in addition to transforming images to midway space (e.g. for intra-subject alignment in a 2-time-point longitudinal analysis).";
REFERENCES
+ "* If FOD registration is being performed:\n"
"Raffelt, D.; Tournier, J.-D.; Fripp, J; Crozier, S.; Connelly, A. & Salvado, O. " // Internal
"Symmetric diffeomorphic registration of fibre orientation distributions. "
"NeuroImage, 2011, 56(3), 1171-1180"
+ "Raffelt, D.; Tournier, J.-D.; Crozier, S.; Connelly, A. & Salvado, O. " // Internal
"Reorientation of fiber orientation distributions using apodized point spread functions. "
"Magnetic Resonance in Medicine, 2012, 67, 844-855";
ARGUMENTS
+ Argument ("image1 image2", "input image 1 ('moving') and input image 2 ('template')").type_image_in()
+ Argument ("contrast1 contrast2", "optional list of additional input images used as additional contrasts. "
"Can be used multiple times. contrastX and imageX must share the same coordinate system. ").type_image_in().optional().allow_multiple();
OPTIONS
+ Option ("type", "the registration type. Valid choices are: "
"rigid, affine, nonlinear, rigid_affine, rigid_nonlinear, affine_nonlinear, rigid_affine_nonlinear (Default: affine_nonlinear)")
+ Argument ("choice").type_choice (transformation_choices)
+ Option ("transformed", "image1 after registration transformed and regridded to the space of image2. "
"Note that -transformed needs to be repeated for each contrast if multi-contrast registration is used.").allow_multiple()
+ Argument ("image").type_image_out ()
+ Option ("transformed_midway", "image1 and image2 after registration transformed and regridded to the midway space. "
"Note that -transformed_midway needs to be repeated for each contrast if multi-contrast registration is used.").allow_multiple()
+ Argument ("image1_transformed").type_image_out ()
+ Argument ("image2_transformed").type_image_out ()
+ Option ("mask1", "a mask to define the region of image1 to use for optimisation.")
+ Argument ("filename").type_image_in ()
+ Option ("mask2", "a mask to define the region of image2 to use for optimisation.")
+ Argument ("filename").type_image_in ()
+ Option("nan", "use NaN as out of bounds value. (Default: 0.0)")
+ Registration::rigid_options
+ Registration::affine_options
+ Registration::adv_init_options
+ Registration::lin_stage_options
+ Registration::nonlinear_options
+ Registration::fod_options
+ multiContrastOptions
+ DataType::options();
}
using value_type = double;
void run () {
vector<Header> input1, input2;
const size_t n_images = argument.size() / 2;
{ // parse arguments and load input headers
if (n_images * 2 != argument.size()) {
std::string err;
for (const auto & a : argument)
err += " " + str(a);
throw Exception ("unexpected number of input images. arguments:" + err);
}
bool is1 = true;
for (const auto& arg : argument) {
if (is1)
input1.push_back (Header::open (str(arg)));
else
input2.push_back (Header::open (str(arg)));
is1 = !is1;
}
}
assert (input1.size() == n_images);
if (input1.size() != input2.size())
throw Exception ("require same number of input images for image 1 and image 2");
for (size_t i=0; i<n_images; i++) {
if (input1[i].ndim() != input2[i].ndim())
throw Exception ("input images " + input1[i].name() + " and "
+ input2[i].name() + " do not have the same number of dimensions");
check_3D_nonunity (input1[i]);
check_3D_nonunity (input2[i]);
}
auto opt = get_options ("type");
bool do_rigid = false;
bool do_affine = false;
bool do_nonlinear = false;
int registration_type = 5;
if (opt.size())
registration_type = opt[0][0];
switch (registration_type) {
case 0:
do_rigid = true;
break;
case 1:
do_affine = true;
break;
case 2:
do_nonlinear = true;
break;
case 3:
do_rigid = true;
do_affine = true;
break;
case 4:
do_rigid = true;
do_nonlinear = true;
break;
case 5:
do_affine = true;
do_nonlinear = true;
break;
case 6:
do_rigid = true;
do_affine = true;
do_nonlinear = true;
break;
default:
break;
}
// reorientation_forbidden required for output of transformed images because do_reorientation might change
const bool reorientation_forbidden (get_options ("noreorientation").size());
// do_reorientation == false --> registration without reorientation.
// will be set to false if registration of all input SH images has lmax==0
bool do_reorientation = !reorientation_forbidden;
Eigen::MatrixXd directions_cartesian;
opt = get_options ("directions");
if (opt.size())
directions_cartesian = Math::Sphere::spherical2cartesian (load_matrix (opt[0][0])).transpose();
// check header transformations for equality
Eigen::MatrixXd trafo = MR::Transform(input1[0]).scanner2voxel.linear();
for (size_t i=1; i<n_images; i++) {
if (!trafo.isApprox(MR::Transform(input1[i]).scanner2voxel.linear(),1e-5))
WARN ("Multi contrast image has different header transformation from first image. Ignoring transformation of " + str(input1[i].name()));
}
trafo = MR::Transform(input2[0]).scanner2voxel.linear();
for (size_t i=1; i<n_images; i++) {
if (!trafo.isApprox(MR::Transform(input2[i]).scanner2voxel.linear(),1e-5))
WARN ("Multi contrast image has different header transformation from first image. Ignoring transformation of " + str(input2[i].name()));
}
// multi-contrast settings
vector<Registration::MultiContrastSetting> mc_params (n_images);
for (auto& mc : mc_params) {
mc.do_reorientation = do_reorientation;
}
// set parameters for each contrast
for (size_t i=0; i<n_images; i++) {
// compare input1 and input2 for consistency
if (i>0) check_dimensions (input1[i], input1[i-1], 0, 3);
if (i>0) check_dimensions (input2[i], input2[i-1], 0, 3);
if ((input1[i].ndim() != 3) and (input1[i].ndim() != 4))
throw Exception ("image dimensionality other than 3 or 4 are not supported. image " +
str(input1[i].name()) + " is " + str(input1[i].ndim()) + " dimensional");
const size_t nvols1 = input1[i].ndim() == 3 ? 1 : input1[i].size(3);
const size_t nvols2 = input2[i].ndim() == 3 ? 1 : input2[i].size(3);
if (nvols1 != nvols2)
throw Exception ("input images do not have the same number of volumes: " + str(input2[i].name()) + " and " + str(input1[i].name()));
// set do_reorientation and image_lmax
if (nvols1 == 1) { // 3D or one volume
mc_params[i].do_reorientation = false;
mc_params[i].image_lmax = 0;
CONSOLE ("3D input pair "+input1[i].name()+", "+input2[i].name());
} else { // more than one volume
if (do_reorientation && nvols1 > 1 && SH::NforL(SH::LforN(nvols1)) == nvols1) {
CONSOLE ("SH image input pair "+input1[i].name()+", "+input2[i].name());
mc_params[i].do_reorientation = true;
mc_params[i].image_lmax = Math::SH::LforN (nvols1);
if (!directions_cartesian.cols())
directions_cartesian = Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_60()).transpose();
} else {
CONSOLE ("4D scalar input pair "+input1[i].name()+", "+input2[i].name());
mc_params[i].do_reorientation = false;
mc_params[i].image_lmax = 0;
}
}
// set lmax to image_lmax and set image_nvols
mc_params[i].lmax = mc_params[i].image_lmax;
mc_params[i].image_nvols = input1[i].ndim() < 4 ? 1 : input1[i].size(3);
}
ssize_t max_mc_image_lmax = std::max_element(mc_params.begin(), mc_params.end(),
[](const Registration::MultiContrastSetting& x, const Registration::MultiContrastSetting& y)
{return x.lmax < y.lmax;})->lmax;
do_reorientation = std::any_of(mc_params.begin(), mc_params.end(),
[](Registration::MultiContrastSetting const& i){return i.do_reorientation;});
if (do_reorientation)
CONSOLE("performing FOD registration");
if (!do_reorientation and directions_cartesian.cols())
WARN ("-directions option ignored since no FOD reorientation is being performed");
INFO ("maximum input lmax: "+str(max_mc_image_lmax));
opt = get_options ("transformed");
vector<std::string> im1_transformed_paths;
if (opt.size()) {
if (opt.size() > n_images)
throw Exception ("number of -transformed images exceeds number of contrasts");
if (opt.size() != n_images)
WARN ("number of -transformed images lower than number of contrasts");
for (size_t c = 0; c < opt.size(); c++) {
Registration::check_image_output (opt[c][0], input2[c]);
im1_transformed_paths.push_back(opt[c][0]);
INFO (input1[c].name() + ", transformed to space of image2, will be written to " + im1_transformed_paths[c]);
}
}
vector<std::string> input1_midway_transformed_paths;
vector<std::string> input2_midway_transformed_paths;
opt = get_options ("transformed_midway");
if (opt.size()) {
if (opt.size() > n_images)
throw Exception ("number of -transformed_midway images exceeds number of contrasts");
if (opt.size() != n_images)
WARN ("number of -transformed_midway images lower than number of contrasts");
for (size_t c = 0; c < opt.size(); c++) {
Registration::check_image_output (opt[c][0], input2[c]);
input1_midway_transformed_paths.push_back(opt[c][0]);
INFO (input1[c].name() + ", transformed to midway space, will be written to " + input1_midway_transformed_paths[c]);
Registration::check_image_output (opt[c][1], input1[c]);
input2_midway_transformed_paths.push_back(opt[c][1]);
INFO (input2[c].name() + ", transformed to midway space, will be written to " + input2_midway_transformed_paths[c]);
}
}
opt = get_options ("mask1");
Image<value_type> im1_mask;
if (opt.size ()) {
im1_mask = Image<value_type>::open(opt[0][0]);
check_dimensions (input1[0], im1_mask, 0, 3);
}
opt = get_options ("mask2");
Image<value_type> im2_mask;
if (opt.size ()) {
im2_mask = Image<value_type>::open(opt[0][0]);
check_dimensions (input2[0], im2_mask, 0, 3);
}
// Out of bounds value
value_type out_of_bounds_value = 0.0;
opt = get_options ("nan");
if (opt.size())
out_of_bounds_value = NAN;
// ****** RIGID REGISTRATION OPTIONS *******
Registration::Linear rigid_registration;
opt = get_options ("rigid");
bool output_rigid = false;
std::string rigid_filename;
if (opt.size()) {
if (!do_rigid)
throw Exception ("rigid transformation output requested when no rigid registration is requested");
output_rigid = true;
rigid_filename = std::string (opt[0][0]);
}
opt = get_options ("rigid_1tomidway");
bool output_rigid_1tomid = false;
std::string rigid_1tomid_filename;
if (opt.size()) {
if (!do_rigid)
throw Exception ("midway rigid transformation output requested when no rigid registration is requested");
output_rigid_1tomid = true;
rigid_1tomid_filename = std::string (opt[0][0]);
}
opt = get_options ("rigid_2tomidway");
bool output_rigid_2tomid = false;
std::string rigid_2tomid_filename;
if (opt.size()) {
if (!do_rigid)
throw Exception ("midway rigid transformation output requested when no rigid registration is requested");
output_rigid_2tomid = true;
rigid_2tomid_filename = std::string (opt[0][0]);
}
Registration::Transform::Rigid rigid;
opt = get_options ("rigid_init_matrix");
bool init_rigid_matrix_set = false;
if (opt.size()) {
init_rigid_matrix_set = true;
Eigen::Vector3d centre;
transform_type rigid_transform = load_transform (opt[0][0], centre);
rigid.set_transform (rigid_transform);
if (!std::isfinite(centre(0))) {
rigid_registration.set_init_translation_type (Registration::Transform::Init::set_centre_mass);
} else {
rigid.set_centre_without_transform_update(centre);
rigid_registration.set_init_translation_type (Registration::Transform::Init::none);
}
}
opt = get_options ("rigid_init_translation");
if (opt.size()) {
if (init_rigid_matrix_set)
throw Exception ("options -rigid_init_matrix and -rigid_init_translation are mutually exclusive");
Registration::set_init_translation_model_from_option (rigid_registration, (int)opt[0][0]);
}
opt = get_options ("rigid_init_rotation");
if (opt.size()) {
Registration::set_init_rotation_model_from_option (rigid_registration, (int)opt[0][0]);
}
opt = get_options ("rigid_scale");
if (opt.size ()) {
if (!do_rigid)
throw Exception ("the rigid multi-resolution scale factors were input when no rigid registration is requested");
rigid_registration.set_scale_factor (parse_floats (opt[0][0]));
}
opt = get_options ("rigid_loop_density");
if (opt.size ()) {
if (!do_rigid)
throw Exception ("the rigid sparsity factor was input when no rigid registration is requested");
rigid_registration.set_loop_density (parse_floats (opt[0][0]));
}
opt = get_options ("rigid_niter");
if (opt.size ()) {
if (!do_rigid)
throw Exception ("the number of rigid iterations have been input when no rigid registration is requested");
rigid_registration.set_max_iter (parse_ints<uint32_t> (opt[0][0]));
}
opt = get_options ("rigid_metric");
Registration::LinearMetricType rigid_metric = Registration::Diff;
if (opt.size()) {
switch ((int)opt[0][0]){
case 0:
rigid_metric = Registration::Diff;
break;
case 1:
rigid_metric = Registration::NCC;
break;
default:
break;
}
}
if (rigid_metric == Registration::NCC)
throw Exception ("TODO: cross correlation metric not yet implemented");
opt = get_options ("rigid_metric.diff.estimator");
Registration::LinearRobustMetricEstimatorType rigid_estimator = Registration::None;
if (opt.size()) {
if (rigid_metric != Registration::Diff)
throw Exception ("rigid_metric.diff.estimator set but cost function is not diff.");
switch ((int)opt[0][0]) {
case 0:
rigid_estimator = Registration::L1;
break;
case 1:
rigid_estimator = Registration::L2;
break;
case 2:
rigid_estimator = Registration::LP;
break;
default:
break;
}
}
opt = get_options ("rigid_lmax");
vector<uint32_t> rigid_lmax;
if (opt.size ()) {
if (!do_rigid)
throw Exception ("the -rigid_lmax option has been set when no rigid registration is requested");
if (max_mc_image_lmax == 0)
throw Exception ("-rigid_lmax option is not valid if no input image is FOD image");
rigid_lmax = parse_ints<uint32_t> (opt[0][0]);
for (size_t i = 0; i < rigid_lmax.size (); ++i)
if (rigid_lmax[i] > max_mc_image_lmax) {
WARN ("the requested -rigid_lmax exceeds the lmax of the input images, setting it to " + str(max_mc_image_lmax));
rigid_lmax[i] = max_mc_image_lmax;
}
rigid_registration.set_lmax (rigid_lmax);
}
std::ofstream linear_logstream;
opt = get_options ("rigid_log");
if (opt.size()) {
if (!do_rigid)
throw Exception ("the -rigid_log option has been set when no rigid registration is requested");
linear_logstream.open (opt[0][0]);
rigid_registration.set_log_stream (linear_logstream.rdbuf());
}
// ****** AFFINE REGISTRATION OPTIONS *******
Registration::Linear affine_registration;
opt = get_options ("affine");
bool output_affine = false;
std::string affine_filename;
if (opt.size()) {
if (!do_affine)
throw Exception ("affine transformation output requested when no affine registration is requested");
output_affine = true;
affine_filename = std::string (opt[0][0]);
}
opt = get_options ("affine_1tomidway");
bool output_affine_1tomid = false;
std::string affine_1tomid_filename;
if (opt.size()) {
if (!do_affine)
throw Exception ("midway affine transformation output requested when no affine registration is requested");
output_affine_1tomid = true;
affine_1tomid_filename = std::string (opt[0][0]);
}
opt = get_options ("affine_2tomidway");
bool output_affine_2tomid = false;
std::string affine_2tomid_filename;
if (opt.size()) {
if (!do_affine)
throw Exception ("midway affine transformation output requested when no affine registration is requested");
output_affine_2tomid = true;
affine_2tomid_filename = std::string (opt[0][0]);
}
Registration::Transform::Affine affine;
opt = get_options ("affine_init_matrix");
bool init_affine_matrix_set = false;
if (opt.size()) {
if (init_rigid_matrix_set)
throw Exception ("you cannot initialise registrations with both rigid and affine transformations");
if (do_rigid)
throw Exception ("you cannot initialise with -affine_init_matrix since a rigid registration is being performed");
init_affine_matrix_set = true;
Eigen::Vector3d centre;
transform_type affine_transform = load_transform (opt[0][0], centre);
affine.set_transform (affine_transform);
if (!std::isfinite(centre(0))) {
affine_registration.set_init_translation_type (Registration::Transform::Init::set_centre_mass);
} else {
affine.set_centre_without_transform_update(centre);
affine_registration.set_init_translation_type (Registration::Transform::Init::none);
}
}
opt = get_options ("affine_init_translation");
if (opt.size()) {
if (init_affine_matrix_set)
throw Exception ("options -affine_init_matrix and -affine_init_translation are mutually exclusive");
Registration::set_init_translation_model_from_option (affine_registration, (int)opt[0][0]);
}
opt = get_options ("affine_init_rotation");
if (opt.size()) {
if (init_affine_matrix_set)
throw Exception ("options -affine_init_matrix and -affine_init_rotation are mutually exclusive");
Registration::set_init_rotation_model_from_option (affine_registration, (int)opt[0][0]);
}
opt = get_options ("affine_scale");
if (opt.size ()) {
if (!do_affine)
throw Exception ("the affine multi-resolution scale factors were input when no affine registration is requested");
affine_registration.set_scale_factor (parse_floats (opt[0][0]));
}
opt = get_options ("affine_loop_density");
if (opt.size ()) {
if (!do_affine)
throw Exception ("the affine sparsity factor was input when no affine registration is requested");
affine_registration.set_loop_density (parse_floats (opt[0][0]));
}
opt = get_options ("affine_metric");
Registration::LinearMetricType affine_metric = Registration::Diff;
if (opt.size()) {
switch ((int)opt[0][0]){
case 0:
affine_metric = Registration::Diff;
break;
case 1:
affine_metric = Registration::NCC;
break;
default:
break;
}
}
if (affine_metric == Registration::NCC)
throw Exception ("TODO cross correlation metric not yet implemented");
opt = get_options ("affine_metric.diff.estimator");
Registration::LinearRobustMetricEstimatorType affine_estimator = Registration::None;
if (opt.size()) {
if (affine_metric != Registration::Diff)
throw Exception ("affine_metric.diff.estimator set but cost function is not diff.");
switch ((int)opt[0][0]) {
case 0:
affine_estimator = Registration::L1;
break;
case 1:
affine_estimator = Registration::L2;
break;
case 2:
affine_estimator = Registration::LP;
break;
default:
break;
}
}
opt = get_options ("affine_niter");
if (opt.size ()) {
if (!do_affine)
throw Exception ("the number of affine iterations have been input when no affine registration is requested");
affine_registration.set_max_iter (parse_ints<uint32_t> (opt[0][0]));
}
opt = get_options ("affine_lmax");
vector<uint32_t> affine_lmax;
if (opt.size ()) {
if (!do_affine)
throw Exception ("the -affine_lmax option has been set when no affine registration is requested");
if (max_mc_image_lmax == 0)
throw Exception ("-affine_lmax option is not valid if no input image is FOD image");
affine_lmax = parse_ints<uint32_t> (opt[0][0]);
for (size_t i = 0; i < affine_lmax.size (); ++i)
if (affine_lmax[i] > max_mc_image_lmax) {
WARN ("the requested -affine_lmax exceeds the lmax of the input images, setting it to " + str(max_mc_image_lmax));
affine_lmax[i] = max_mc_image_lmax;
}
affine_registration.set_lmax (affine_lmax);
}
opt = get_options ("affine_log");
if (opt.size()) {
if (!do_affine)
throw Exception ("the -affine_log option has been set when no rigid registration is requested");
linear_logstream.open (opt[0][0]);
affine_registration.set_log_stream (linear_logstream.rdbuf());
}
// ****** LINEAR INITIALISATION AND STAGE OPTIONS *******
if (!do_rigid and !do_affine) {
for (auto& s: Registration::adv_init_options) {
if (get_options(s.id).size()) {
std::stringstream msg;
msg << "cannot use option -" << s.id << " when no linear registration is requested";
throw Exception (msg.str());
}
}
for (auto& s: Registration::lin_stage_options) {
if (get_options(s.id).size()) {
std::stringstream msg;
msg << "cannot use option -" << s.id << " when no linear registration is requested";
throw Exception (msg.str());
}
}
}
if (do_rigid)
Registration::parse_general_options (rigid_registration);
if (do_affine)
Registration::parse_general_options (affine_registration);
// ****** NON-LINEAR REGISTRATION OPTIONS *******
Registration::NonLinear nl_registration;
opt = get_options ("nl_warp");
std::string warp1_filename;
std::string warp2_filename;
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("Non-linear warp output requested when no non-linear registration is requested");
warp1_filename = std::string (opt[0][0]);
warp2_filename = std::string (opt[0][1]);
}
opt = get_options ("nl_warp_full");
std::string warp_full_filename;
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("Non-linear warp output requested when no non-linear registration is requested");
warp_full_filename = std::string (opt[0][0]);
if (!Path::is_mrtrix_image (warp_full_filename) && !(Path::has_suffix (warp_full_filename, {".nii", ".nii.gz"}) &&
File::Config::get_bool ("NIfTIAutoSaveJSON", false)))
throw Exception ("nl_warp_full output requires .mif/.mih or NIfTI file format with NIfTIAutoSaveJSON config option set.");
}
opt = get_options ("nl_init");
bool nonlinear_init = false;
if (opt.size()) {
nonlinear_init = true;
if (!do_nonlinear)
throw Exception ("the non linear initialisation option -nl_init cannot be used when no non linear registration is requested");
if (!Path::is_mrtrix_image (opt[0][0]) && !(Path::has_suffix (opt[0][0], {".nii", ".nii.gz"}) &&
File::Config::get_bool ("NIfTIAutoLoadJSON", false) &&
Path::exists(File::NIfTI::get_json_path(opt[0][0]))))
WARN ("nl_init input requires warp_full in original .mif/.mih file format or in NIfTI file format with associated JSON. "
"Converting to other file formats may remove linear transformations stored in the image header.");
Image<default_type> input_warps = Image<default_type>::open (opt[0][0]);
if (input_warps.ndim() != 5)
throw Exception ("non-linear initialisation input is not 5D. Input must be from previous non-linear output");
nl_registration.initialise (input_warps);
if (do_affine) {
WARN ("no affine registration will be performed when initialising with non-linear non-linear warps");
do_affine = false;
}
if (do_rigid) {
WARN ("no rigid registration will be performed when initialising with non-linear non-linear warps");
do_rigid = false;
}
if (init_affine_matrix_set)
WARN ("-affine_init has no effect since the non-linear init warp also contains the linear transform in the image header");
if (init_rigid_matrix_set)
WARN ("-rigid_init has no effect since the non-linear init warp also contains the linear transform in the image header");
}
opt = get_options ("nl_scale");
if (opt.size ()) {
if (!do_nonlinear)
throw Exception ("the non-linear multi-resolution scale factors were input when no non-linear registration is requested");
vector<default_type> scale_factors = parse_floats (opt[0][0]);
if (nonlinear_init) {
WARN ("-nl_scale option ignored since only the full resolution will be performed when initialising with non-linear warp");
} else {
nl_registration.set_scale_factor (scale_factors);
}
}
opt = get_options ("nl_niter");
if (opt.size ()) {
if (!do_nonlinear)
throw Exception ("the number of non-linear iterations have been input when no non-linear registration is requested");
vector<uint32_t> iterations_per_level = parse_ints<uint32_t> (opt[0][0]);
if (nonlinear_init && iterations_per_level.size() > 1)
throw Exception ("when initialising the non-linear registration the max number of iterations can only be defined for a single level");
else
nl_registration.set_max_iter (iterations_per_level);
}
opt = get_options ("nl_update_smooth");
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("the warp update field smoothing parameter was input when no non-linear registration is requested");
nl_registration.set_update_smoothing (opt[0][0]);
}
opt = get_options ("nl_disp_smooth");
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("the displacement field smoothing parameter was input when no non-linear registration is requested");
nl_registration.set_disp_smoothing (opt[0][0]);
}
opt = get_options ("nl_grad_step");
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("the initial gradient step size was input when no non-linear registration is requested");
nl_registration.set_init_grad_step (opt[0][0]);
}
opt = get_options ("nl_lmax");
vector<uint32_t> nl_lmax;
if (opt.size()) {
if (!do_nonlinear)
throw Exception ("the -nl_lmax option has been set when no non-linear registration is requested");
if (max_mc_image_lmax == 0)
throw Exception ("-nl_lmax option is not valid if no input image is FOD image");
nl_lmax = parse_ints<uint32_t> (opt[0][0]);
nl_registration.set_lmax (nl_lmax);
for (size_t i = 0; i < (nl_lmax).size (); ++i)
if ((nl_lmax)[i] > max_mc_image_lmax)
throw Exception ("the requested -nl_lmax exceeds the lmax of the input images");
}
// ****** MC options *******
// TODO: set tissue specific lmax?
opt = get_options ("mc_weights");
if (opt.size()) {
vector<default_type> mc_weights = parse_floats (opt[0][0]);
if (mc_weights.size() == 1)
mc_weights.resize (n_images, mc_weights[0]);
else if (mc_weights.size() != n_images)
throw Exception ("number of mc_weights does not match number of contrasts");
for (const default_type & w : mc_weights)
if (w < 0.0) throw Exception ("mc_weights must be non-negative");
if (do_nonlinear) {
default_type sm = 0.0;
std::for_each (mc_weights.begin(), mc_weights.end(), [&] (default_type n) {sm += n;});
if (MR::abs (sm - n_images) > 1.e-6)
WARN ("mc_weights do not sum to the number of contrasts. This changes the regularisation of the nonlinear registration.");
}
for (size_t idx = 0; idx < n_images; idx++)
mc_params[idx].weight = mc_weights[idx];
}
{
ssize_t max_requested_lmax = 0;
if (max_mc_image_lmax != 0) {
if (do_rigid) max_requested_lmax = std::max(max_requested_lmax, rigid_registration.get_lmax());
if (do_affine) max_requested_lmax = std::max(max_requested_lmax, affine_registration.get_lmax());
if (do_nonlinear) max_requested_lmax = std::max(max_requested_lmax, nl_registration.get_lmax());
INFO ("maximum used lmax: "+str(max_requested_lmax));
}
for (size_t idx = 0; idx < n_images; ++idx) {
mc_params[idx].lmax = std::min (mc_params[idx].image_lmax, max_requested_lmax);
if (input1[idx].ndim() == 3)
mc_params[idx].nvols = 1;
else if (mc_params[idx].do_reorientation) {
mc_params[idx].nvols = Math::SH::NforL (mc_params[idx].lmax);
} else
mc_params[idx].nvols = input1[idx].size(3);
}
mc_params[0].start = 0;
for (size_t idx = 1; idx < n_images; ++idx)
mc_params[idx].start = mc_params[idx-1].start + mc_params[idx-1].nvols;
for (const auto & mc : mc_params)
DEBUG (str(mc));
}
if (mc_params.size() > 1) {
if (do_rigid) rigid_registration.set_mc_parameters (mc_params);
if (do_affine) affine_registration.set_mc_parameters (mc_params);
if (do_nonlinear) nl_registration.set_mc_parameters (mc_params);
}
// ****** PARSING DONE, PRELOAD THE DATA *******
// only load the volumes we actually need for the highest lmax requested
// load multiple tissue types into the same 4D image
// drop last axis if input is 4D with one volume for speed reasons
Image<value_type> images1, images2;
INFO ("preloading input1...");
Registration::preload_data (input1, images1, mc_params);
INFO ("preloading input2...");
Registration::preload_data (input2, images2, mc_params);
INFO ("preloading input images done");
// ****** RUN RIGID REGISTRATION *******
if (do_rigid) {
CONSOLE ("running rigid registration");
if (images2.ndim() == 4) {
if (do_reorientation)
rigid_registration.set_directions (directions_cartesian);
// if (rigid_metric == Registration::NCC) // TODO
if (rigid_metric == Registration::Diff) {
if (rigid_estimator == Registration::None) {
Registration::Metric::MeanSquared4D<Image<value_type>, Image<value_type>> metric;
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::L1) {
Registration::Metric::L1 estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::L1> metric (images1, images2, estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::L2) {
Registration::Metric::L2 estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::L2> metric (images1, images2, estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::LP) {
Registration::Metric::LP estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::LP> metric (images1, images2, estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else throw Exception ("FIXME: estimator selection");
} else throw Exception ("FIXME: metric selection");
} else { // 3D
if (rigid_metric == Registration::NCC){
Registration::Metric::LocalCrossCorrelation metric;
vector<size_t> extent(3,3);
rigid_registration.set_extent (extent);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
}
else if (rigid_metric == Registration::Diff) {
if (rigid_estimator == Registration::None) {
Registration::Metric::MeanSquared metric;
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::L1) {
Registration::Metric::L1 estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::L1> metric(estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::L2) {
Registration::Metric::L2 estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::L2> metric(estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else if (rigid_estimator == Registration::LP) {
Registration::Metric::LP estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::LP> metric(estimator);
rigid_registration.run_masked (metric, rigid, images1, images2, im1_mask, im2_mask);
} else throw Exception ("FIXME: estimator selection");
} else throw Exception ("FIXME: metric selection");
}
if (output_rigid_1tomid)
save_transform (rigid.get_transform_half(), rigid.get_centre(), rigid_1tomid_filename);
if (output_rigid_2tomid)
save_transform (rigid.get_transform_half_inverse(), rigid.get_centre(), rigid_2tomid_filename);
if (output_rigid)
save_transform (rigid.get_transform(), rigid.get_centre(), rigid_filename);
}
// ****** RUN AFFINE REGISTRATION *******
if (do_affine) {
CONSOLE ("running affine registration");
if (do_rigid) {
affine.set_centre (rigid.get_centre());
affine.set_transform (rigid.get_transform());
affine_registration.set_init_translation_type (Registration::Transform::Init::none);
}
if (images2.ndim() == 4) {
if (do_reorientation)
affine_registration.set_directions (directions_cartesian);
// if (affine_metric == Registration::NCC) // TODO
if (affine_metric == Registration::Diff) {
if (affine_estimator == Registration::None) {
Registration::Metric::MeanSquared4D<Image<value_type>, Image<value_type>> metric;
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::L1) {
Registration::Metric::L1 estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::L1> metric (images1, images2, estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::L2) {
Registration::Metric::L2 estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::L2> metric (images1, images2, estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::LP) {
Registration::Metric::LP estimator;
Registration::Metric::DifferenceRobust4D<Image<value_type>, Image<value_type>, Registration::Metric::LP> metric (images1, images2, estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else throw Exception ("FIXME: estimator selection");
} else throw Exception ("FIXME: metric selection");
} else { // 3D
if (affine_metric == Registration::NCC){
Registration::Metric::LocalCrossCorrelation metric;
vector<size_t> extent(3,3);
affine_registration.set_extent (extent);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
}
else if (affine_metric == Registration::Diff) {
if (affine_estimator == Registration::None) {
Registration::Metric::MeanSquared metric;
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::L1) {
Registration::Metric::L1 estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::L1> metric(estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::L2) {
Registration::Metric::L2 estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::L2> metric(estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else if (affine_estimator == Registration::LP) {
Registration::Metric::LP estimator;
Registration::Metric::DifferenceRobust<Registration::Metric::LP> metric(estimator);
affine_registration.run_masked (metric, affine, images1, images2, im1_mask, im2_mask);
} else throw Exception ("FIXME: estimator selection");
} else throw Exception ("FIXME: metric selection");
}
if (output_affine_1tomid)
save_transform (affine.get_transform_half(), affine.get_centre(), affine_1tomid_filename);
if (output_affine_2tomid)
save_transform (affine.get_transform_half_inverse(), affine.get_centre(), affine_2tomid_filename);
if (output_affine)
save_transform (affine.get_transform(), affine.get_centre(), affine_filename);
}
// ****** RUN NON-LINEAR REGISTRATION *******
if (do_nonlinear) {
CONSOLE ("running non-linear registration");
if (do_reorientation)
nl_registration.set_aPSF_directions (directions_cartesian);
if (do_affine || init_affine_matrix_set) {
nl_registration.run (affine, images1, images2, im1_mask, im2_mask);
} else if (do_rigid || init_rigid_matrix_set) {
nl_registration.run (rigid, images1, images2, im1_mask, im2_mask);
} else {
Registration::Transform::Affine identity_transform;
nl_registration.run (identity_transform, images1, images2, im1_mask, im2_mask);
}
if (warp_full_filename.size()) {
//TODO add affine parameters to comments too?
Header output_header = nl_registration.get_output_warps_header();
nl_registration.write_params_to_header (output_header);
nl_registration.write_linear_to_header (output_header);
output_header.datatype() = DataType::from_command_line (DataType::Float32);
auto output_warps = Image<float>::create (warp_full_filename, output_header);
nl_registration.get_output_warps (output_warps);
}
if (warp1_filename.size()) {
Header output_header (images2);
output_header.ndim() = 4;
output_header.size(3) =3;
nl_registration.write_params_to_header (output_header);
output_header.datatype() = DataType::from_command_line (DataType::Float32);
auto warp1 = Image<default_type>::create (warp1_filename, output_header).with_direct_io();
Registration::Warp::compute_full_deformation (nl_registration.get_im2_to_mid_linear().inverse(),
*(nl_registration.get_mid_to_im2()),
*(nl_registration.get_im1_to_mid()),
nl_registration.get_im1_to_mid_linear(), warp1);
}
if (warp2_filename.size()) {
Header output_header (images1);
output_header.ndim() = 4;
output_header.size(3) = 3;
nl_registration.write_params_to_header (output_header);
output_header.datatype() = DataType::from_command_line (DataType::Float32);
auto warp2 = Image<default_type>::create (warp2_filename, output_header).with_direct_io();
Registration::Warp::compute_full_deformation (nl_registration.get_im1_to_mid_linear().inverse(),
*(nl_registration.get_mid_to_im1()),
*(nl_registration.get_im2_to_mid()),
nl_registration.get_im2_to_mid_linear(), warp2);
}
}
if (im1_transformed_paths.size()) {
CONSOLE ("Writing input images1 transformed to space of images2...");
Image<default_type> deform_field;
if (do_nonlinear) {
Header deform_header (input2[0]);
deform_header.ndim() = 4;
deform_header.size(3) = 3;
deform_field = Image<default_type>::scratch (deform_header);
Registration::Warp::compute_full_deformation (nl_registration.get_im2_to_mid_linear().inverse(),
*(nl_registration.get_mid_to_im2()),
*(nl_registration.get_im1_to_mid()),
nl_registration.get_im1_to_mid_linear(),
deform_field);
}
for (size_t idx = 0; idx < im1_transformed_paths.size(); idx++) {
CONSOLE ("... " + im1_transformed_paths[idx]);
{
// LogLevelLatch log_level (0);
Image<value_type> im1_image = Image<value_type>::open (input1[idx].name());
Header transformed_header (input2[idx]);
transformed_header.datatype() = DataType::from_command_line (DataType::Float32);
Image<value_type> im1_transformed = Image<value_type>::create (im1_transformed_paths[idx], transformed_header);
const size_t nvols = im1_image.ndim() == 3 ? 1 : im1_image.size(3);
const bool reorient_output = !reorientation_forbidden && (nvols > 1) && SH::NforL(SH::LforN(nvols)) == nvols;
if (do_nonlinear) {
Filter::warp<Interp::Cubic> (im1_image, im1_transformed, deform_field, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient_warp ("reorienting FODs",
im1_transformed,
deform_field,
Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else if (do_affine) {
Filter::reslice<Interp::Cubic> (im1_image, im1_transformed, affine.get_transform(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting FODs",
im1_transformed,
im1_transformed,
affine.get_transform(),
Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else { // rigid
Filter::reslice<Interp::Cubic> (im1_image, im1_transformed, rigid.get_transform(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting FODs",
im1_transformed,
im1_transformed,
rigid.get_transform(),
Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
}
}
}
}
if (input1_midway_transformed_paths.size() and input2_midway_transformed_paths.size()) {
Header midway_header;
Image<default_type> im1_deform_field, im2_deform_field;
if (do_nonlinear)
midway_header = Header (*nl_registration.get_im1_to_mid());
else if (do_affine)
midway_header = compute_minimum_average_header (input1[0], input2[0], affine.get_transform_half_inverse(), affine.get_transform_half());
else // rigid
midway_header = compute_minimum_average_header (input1[0], input2[0], rigid.get_transform_half_inverse(), rigid.get_transform_half());
midway_header.datatype() = DataType::from_command_line (DataType::Float32);
// process input1 then input2 to reduce memory consumption
CONSOLE ("Writing input1 transformed to midway...");
if (do_nonlinear) {
im1_deform_field = Image<default_type>::scratch (*(nl_registration.get_im1_to_mid()));
Registration::Warp::compose_linear_deformation (nl_registration.get_im1_to_mid_linear(), *(nl_registration.get_im1_to_mid()), im1_deform_field);
}
for (size_t idx = 0; idx < input1_midway_transformed_paths.size(); idx++) {
CONSOLE ("... " + input1_midway_transformed_paths[idx]);
{
// LogLevelLatch log_level (0);
Image<value_type> im1_image = Image<value_type>::open (input1[idx].name());
midway_header.ndim() = im1_image.ndim();
if (midway_header.ndim() == 4)
midway_header.size(3) = im1_image.size(3);
const size_t nvols = im1_image.ndim() == 3 ? 1 : im1_image.size(3);
const bool reorient_output = !reorientation_forbidden && (nvols > 1) && SH::NforL(SH::LforN(nvols)) == nvols;
if (do_nonlinear) {
auto im1_midway = Image<default_type>::create (input1_midway_transformed_paths[idx], midway_header);
Filter::warp<Interp::Cubic> (im1_image, im1_midway, im1_deform_field, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient_warp ("reorienting ODFs", im1_midway, im1_deform_field,
Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else if (do_affine) {
auto im1_midway = Image<default_type>::create (input1_midway_transformed_paths[idx], midway_header);
Filter::reslice<Interp::Cubic> (im1_image, im1_midway, affine.get_transform_half(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting ODFs", im1_midway, im1_midway, affine.get_transform_half(), Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else { // rigid
auto im1_midway = Image<default_type>::create (input1_midway_transformed_paths[idx], midway_header);
Filter::reslice<Interp::Cubic> (im1_image, im1_midway, rigid.get_transform_half(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting ODFs", im1_midway, im1_midway, rigid.get_transform_half(), Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
}
}
}
CONSOLE ("Writing input2 transformed to midway...");
if (do_nonlinear) {
im2_deform_field = Image<default_type>::scratch (*(nl_registration.get_im2_to_mid()));
Registration::Warp::compose_linear_deformation (nl_registration.get_im2_to_mid_linear(), *(nl_registration.get_im2_to_mid()), im2_deform_field);
}
for (size_t idx = 0; idx < input2_midway_transformed_paths.size(); idx++) {
CONSOLE ("... " + input2_midway_transformed_paths[idx]);
{
// LogLevelLatch log_level (0);
Image<value_type> im2_image = Image<value_type>::open (input2[idx].name());
midway_header.ndim() = im2_image.ndim();
if (midway_header.ndim() == 4)
midway_header.size(3) = im2_image.size(3);
const size_t nvols = im2_image.ndim() == 3 ? 1 : im2_image.size(3);
const value_type val = (std::sqrt (float (1 + 8 * nvols)) - 3.0) / 4.0;
const bool reorient_output = !reorientation_forbidden && (nvols > 1) && !(val - (int)val);
if (do_nonlinear) {
auto im2_midway = Image<default_type>::create (input2_midway_transformed_paths[idx], midway_header);
Filter::warp<Interp::Cubic> (im2_image, im2_midway, im2_deform_field, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient_warp ("reorienting ODFs", im2_midway, im2_deform_field,
Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else if (do_affine) {
auto im2_midway = Image<default_type>::create (input2_midway_transformed_paths[idx], midway_header);
Filter::reslice<Interp::Cubic> (im2_image, im2_midway, affine.get_transform_half_inverse(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting ODFs", im2_midway, im2_midway, affine.get_transform_half_inverse(), Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
} else { // rigid
auto im2_midway = Image<default_type>::create (input2_midway_transformed_paths[idx], midway_header);
Filter::reslice<Interp::Cubic> (im2_image, im2_midway, rigid.get_transform_half_inverse(), Adapter::AutoOverSample, out_of_bounds_value);
if (reorient_output)
Registration::Transform::reorient ("reorienting ODFs", im2_midway, im2_midway, rigid.get_transform_half_inverse(), Math::Sphere::spherical2cartesian (DWI::Directions::electrostatic_repulsion_300()).transpose());
}
}
}
}
if (get_options ("affine_log").size() or get_options ("rigid_log").size())
linear_logstream.close();
}
|