1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "exception.h"
#include "image.h"
#include "image_helpers.h"
#include "adapter/replicate.h"
#include "adapter/subset.h"
#include "algo/loop.h"
#include "filter/optimal_threshold.h"
using namespace MR;
using namespace App;
enum class operator_type { LT, LE, GE, GT, UNDEFINED };
const char* const operator_list[] = { "lt", "le", "ge", "gt", nullptr };
void usage ()
{
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Create bitwise image by thresholding image intensity";
DESCRIPTION
+ "The threshold value to be applied can be determined in one of a number of ways:"
+ "- If no relevant command-line option is used, the command will automatically "
"determine an optimal threshold;"
+ "- The -abs option provides the threshold value explicitly;"
+ "- The -percentile, -top and -bottom options enable more fine-grained control "
"over how the threshold value is determined."
+ "The -mask option only influences those image values that contribute "
"toward the determination of the threshold value; once the threshold is determined, "
"it is applied to the entire image, irrespective of use of the -mask option. If you "
"wish for the voxels outside of the specified mask to additionally be excluded from "
"the output mask, this can be achieved by providing the -out_masked option."
+ "The four operators available through the \"-comparison\" option (\"lt\", \"le\", \"ge\" and \"gt\") "
"correspond to \"less-than\" (<), \"less-than-or-equal\" (<=), \"greater-than-or-equal\" (>=) "
"and \"greater-than\" (>). This offers fine-grained control over how the thresholding "
"operation will behave in the presence of values equivalent to the threshold. "
"By default, the command will select voxels with values greater than or equal to the "
"determined threshold (\"ge\"); unless the -bottom option is used, in which case "
"after a threshold is determined from the relevant lowest-valued image voxels, those "
"voxels with values less than or equal to that threshold (\"le\") are selected. "
"This provides more fine-grained control than the -invert option; the latter "
"is provided for backwards compatibility, but is equivalent to selection of the "
"opposite comparison within this selection."
+ "If no output image path is specified, the command will instead write to "
"standard output the determined threshold value.";
REFERENCES
+ "* If not using any explicit thresholding mechanism: \n"
"Ridgway, G. R.; Omar, R.; Ourselin, S.; Hill, D. L.; Warren, J. D. & Fox, N. C. "
"Issues with threshold masking in voxel-based morphometry of atrophied brains. "
"NeuroImage, 2009, 44, 99-111";
ARGUMENTS
+ Argument ("input", "the input image to be thresholded").type_image_in()
+ Argument ("output", "the (optional) output binary image mask").optional().type_image_out();
OPTIONS
+ OptionGroup ("Threshold determination mechanisms")
+ Option ("abs", "specify threshold value as absolute intensity")
+ Argument ("value").type_float()
+ Option ("percentile", "determine threshold based on some percentile of the image intensity distribution")
+ Argument ("value").type_float (0.0, 100.0)
+ Option ("top", "determine threshold that will result in selection of some number of top-valued voxels")
+ Argument ("count").type_integer (1)
+ Option ("bottom", "determine & apply threshold resulting in selection of some number of bottom-valued voxels "
"(note: implies threshold application operator of \"le\" unless otherwise specified)")
+ Argument ("count").type_integer (1)
+ OptionGroup ("Threshold determination modifiers")
+ Option ("allvolumes", "compute a single threshold for all image volumes, rather than an individual threshold per volume")
+ Option ("ignorezero", "ignore zero-valued input values during threshold determination")
+ Option ("mask", "compute the threshold based only on values within an input mask image")
+ Argument ("image").type_image_in ()
+ OptionGroup ("Threshold application modifiers")
+ Option ("comparison", "comparison operator to use when applying the threshold; "
"options are: " + join(operator_list, ",") + " (default = \"le\" for -bottom; \"ge\" otherwise)")
+ Argument ("choice").type_choice (operator_list)
+ Option ("invert", "invert the output binary mask "
"(equivalent to flipping the operator; provided for backwards compatibility)")
+ Option ("out_masked", "mask the output image based on the provided input mask image")
+ Option ("nan", "set voxels that fail the threshold to NaN rather than zero "
"(output image will be floating-point rather than binary)");
}
using value_type = float;
bool issue_degeneracy_warning = false;
Image<bool> get_mask (const Image<value_type>& in)
{
Image<bool> mask;
auto opt = get_options ("mask");
if (opt.size()) {
mask = Image<bool>::open (opt[0][0]);
check_dimensions (in, mask, 0, 3);
for (size_t axis = 3; axis != mask.ndim(); ++axis) {
if (mask.size (axis) > 1 && axis < in.ndim() && mask.size (axis) != in.size (axis))
throw Exception ("Dimensions of mask image do not match those of main image");
}
}
return mask;
}
vector<value_type> get_data (Image<value_type>& in,
Image<bool>& mask,
const size_t max_axis,
const bool ignore_zero)
{
vector<value_type> data;
data.reserve (voxel_count (in, 0, max_axis));
if (mask.valid()) {
Adapter::Replicate<Image<bool>> mask_replicate (mask, in);
if (ignore_zero) {
for (auto l = Loop(in, 0, max_axis) (in, mask_replicate); l; ++l) {
if (mask_replicate.value() && !std::isnan (static_cast<value_type>(in.value())) && in.value() != 0.0f)
data.push_back (in.value());
}
} else {
for (auto l = Loop(in, 0, max_axis) (in, mask_replicate); l; ++l) {
if (mask_replicate.value() && !std::isnan (static_cast<value_type>(in.value())))
data.push_back (in.value());
}
}
} else {
if (ignore_zero) {
for (auto l = Loop(in, 0, max_axis) (in); l; ++l) {
if (!std::isnan (static_cast<value_type>(in.value())) && in.value() != 0.0f)
data.push_back (in.value());
}
} else {
for (auto l = Loop(in, 0, max_axis) (in); l; ++l) {
if (!std::isnan (static_cast<value_type>(in.value())))
data.push_back (in.value());
}
}
}
if (!data.size())
throw Exception ("No valid input data found; unable to determine threshold");
return data;
}
default_type calculate (Image<value_type>& in,
Image<bool>& mask,
const size_t max_axis,
const default_type abs,
const default_type percentile,
const ssize_t bottom,
const ssize_t top,
const bool ignore_zero)
{
if (std::isfinite (abs)) {
return abs;
} else if (std::isfinite (percentile)) {
auto data = get_data (in, mask, max_axis, ignore_zero);
if (percentile == 100.0) {
return default_type(*std::max_element (data.begin(), data.end()));
} else if (percentile == 0.0) {
return default_type(*std::min_element (data.begin(), data.end()));
} else {
const default_type interp_index = 0.01 * percentile * (data.size()-1);
const size_t lower_index = size_t(std::floor (interp_index));
const default_type mu = interp_index - default_type(lower_index);
std::nth_element (data.begin(), data.begin() + lower_index, data.end());
const default_type lower_value = default_type(data[lower_index]);
std::nth_element (data.begin(), data.begin() + lower_index + 1, data.end());
const default_type upper_value = default_type(data[lower_index + 1]);
return (1.0-mu)*lower_value + mu*upper_value;
}
} else if (std::max (bottom, top) >= 0) {
auto data = get_data (in, mask, max_axis, ignore_zero);
const ssize_t index (bottom >= 0 ?
size_t(bottom) - 1 :
(ssize_t(data.size()) - ssize_t(top)));
if (index < 0 || index >= ssize_t(data.size()))
throw Exception ("Number of valid input image values (" + str(data.size()) + ") less than number of voxels requested via -" + (bottom >= 0 ? "bottom" : "top") + " option (" + str(bottom >= 0 ? bottom : top) + ")");
std::nth_element (data.begin(), data.begin() + index, data.end());
const value_type threshold_float = data[index];
if (index) {
std::nth_element (data.begin(), data.begin() + index - 1, data.end());
if (data[index-1] == threshold_float)
issue_degeneracy_warning = true;
}
if (index < ssize_t(data.size()) - 1) {
std::nth_element (data.begin(), data.begin() + index + 1, data.end());
if (data[index+1] == threshold_float)
issue_degeneracy_warning = true;
}
return default_type(threshold_float);
} else { // No explicit mechanism option: do automatic thresholding
if (max_axis < in.ndim()) {
// Need to extract just the current 3D volume
vector<size_t> in_from (in.ndim()), in_size (in.ndim());
size_t axis;
for (axis = 0; axis != 3; ++axis) {
in_from[axis] = 0;
in_size[axis] = in.size (axis);
}
for (; axis != in.ndim(); ++axis) {
in_from[axis] = in.index (axis);
in_size[axis] = 1;
}
Adapter::Subset<Image<value_type>> in_subset (in, in_from, in_size);
if (mask.valid()) {
vector<size_t> mask_from (mask.ndim()), mask_size (mask.ndim());
for (axis = 0; axis != 3; ++axis) {
mask_from[axis] = 0;
mask_size[axis] = mask.size (axis);
}
for (; axis != mask.ndim(); ++axis) {
mask_from[axis] = mask.index (axis);
mask_size[axis] = 1;
}
Adapter::Subset<Image<bool>> mask_subset (mask, mask_from, mask_size);
Adapter::Replicate<decltype(mask_subset)> mask_replicate (mask_subset, in_subset);
return Filter::estimate_optimal_threshold (in_subset, mask_replicate);
} else {
return Filter::estimate_optimal_threshold (in_subset);
}
} else if (mask.valid()) {
Adapter::Replicate<Image<bool>> mask_replicate (mask, in);
return Filter::estimate_optimal_threshold (in, mask_replicate);
} else {
return Filter::estimate_optimal_threshold (in);
}
}
}
template <typename T>
void apply (Image<value_type>& in,
Image<bool>& mask,
Image<T>& out,
const size_t max_axis,
const value_type threshold,
const operator_type comp,
const bool mask_out)
{
const T true_value = std::is_floating_point<T>::value ? 1.0 : true;
const T false_value = std::is_floating_point<T>::value ? NaN : false;
std::function<bool(value_type, value_type)> func;
switch (comp) {
case operator_type::LT: func = [] (const value_type in, const value_type ref) { return in < ref; }; break;
case operator_type::LE: func = [] (const value_type in, const value_type ref) { return in <= ref; }; break;
case operator_type::GE: func = [] (const value_type in, const value_type ref) { return in >= ref; }; break;
case operator_type::GT: func = [] (const value_type in, const value_type ref) { return in > ref; }; break;
case operator_type::UNDEFINED: assert (0);
}
if (mask_out) {
assert (mask.valid());
for (auto l = Loop(in, 0, max_axis) (in, mask, out); l; ++l)
out.value() = !std::isnan (static_cast<value_type>(in.value())) && mask.value() && func (in.value(), threshold) ? true_value : false_value;
} else {
for (auto l = Loop(in, 0, max_axis) (in, out); l; ++l)
out.value() = !std::isnan (static_cast<value_type>(in.value())) && func (in.value(), threshold) ? true_value : false_value;
}
}
// TODO Don't write directly to std::cout;
// will get hidden by /r of progress bar
// Alternatively, withhold progress bar if writing to std::cout
template <typename T>
void execute (Image<value_type>& in,
Image<bool>& mask,
const std::string& out_path,
const default_type abs,
const default_type percentile,
const ssize_t bottom,
const ssize_t top,
const bool ignore_zero,
const bool all_volumes,
const operator_type op,
const bool mask_out)
{
const bool to_cout = out_path.empty();
Image<T> out;
if (!to_cout) {
Header header_out (in);
header_out.datatype() = DataType::from<T>();
header_out.datatype().set_byte_order_native();
out = Image<T>::create (out_path, header_out);
}
// Branch based on whether or not we need to process each image volume individually
if (in.ndim() > 3 && !all_volumes) {
// Do one volume at a time
// If writing to cout, also add a newline between each volume
if (to_cout) {
LogLevelLatch latch (App::log_level - 1);
bool is_first_loop = true;
for (auto l = Loop(3, in.ndim()) (in); l; ++l) {
if (is_first_loop)
is_first_loop = false;
else
std::cout << "\n";
const default_type threshold = calculate (in, mask, 3, abs, percentile, bottom, top, ignore_zero);
std::cout << threshold;
}
} else {
for (auto l = Loop("Determining and applying per-volume thresholds", 3, in.ndim()) (in); l; ++l) {
LogLevelLatch latch (App::log_level - 1);
const default_type threshold = calculate (in, mask, 3, abs, percentile, bottom, top, ignore_zero);
assign_pos_of (in, 3).to (out);
apply (in, mask, out, 3, value_type(threshold), op, mask_out);
}
}
return;
} else if (in.ndim() <= 3 && all_volumes) {
WARN ("Option -allvolumes ignored; input image is less than 4D");
}
// Process whole input image as a single block
const default_type threshold = calculate (in, mask, in.ndim(), abs, percentile, bottom, top, ignore_zero);
if (to_cout)
std::cout << threshold;
else
apply (in, mask, out, in.ndim(), value_type(threshold), op, mask_out);
}
void run ()
{
const default_type abs = get_option_value ("abs", NaN);
const default_type percentile = get_option_value ("percentile", NaN);
const ssize_t bottom = get_option_value ("bottom", -1);
const ssize_t top = get_option_value ("top", -1);
const size_t num_explicit_mechanisms = (std::isfinite (abs) ? 1 : 0) +
(std::isfinite (percentile) ? 1 : 0) +
(bottom >= 0 ? 1 : 0) +
(top >= 0 ? 1 : 0);
if (num_explicit_mechanisms > 1)
throw Exception ("Cannot specify more than one mechanism for threshold selection");
auto header_in = Header::open (argument[0]);
if (header_in.datatype().is_complex())
throw Exception ("Cannot perform thresholding directly on complex image data");
auto in = header_in.get_image<value_type>();
const bool to_cout = argument.size() == 1;
const std::string output_path = to_cout ? std::string("") : argument[1];
const bool all_volumes = get_options("allvolumes").size();
const bool ignore_zero = get_options("ignorezero").size();
const bool use_nan = get_options ("nan").size();
const bool invert = get_options ("invert").size();
bool mask_out = get_options ("out_masked").size();
auto opt = get_options ("comparison");
operator_type comp = opt.size() ?
operator_type(int(opt[0][0])) :
(bottom >= 0 ? operator_type::LE : operator_type::GE);
if (invert) {
switch (comp) {
case operator_type::LT: comp = operator_type::GE; break;
case operator_type::LE: comp = operator_type::GT; break;
case operator_type::GE: comp = operator_type::LT; break;
case operator_type::GT: comp = operator_type::LE; break;
case operator_type::UNDEFINED: assert (0);
}
}
if (to_cout) {
if (use_nan) {
WARN ("Option -nan ignored: has no influence when no output image is specified");
}
if (opt.size()) {
WARN ("Option -comparison ignored: has no influence when no output image is specified");
comp = operator_type::UNDEFINED;
}
if (invert) {
WARN ("Option -invert ignored: has no influence when no output image is specified");
}
if (mask_out) {
WARN ("Option -out_masked ignored: has no influence when no output image is specified");
}
}
Image<bool> mask;
if (std::isfinite (abs)) {
if (ignore_zero) {
WARN ("-ignorezero option has no effect if combined with -abs option");
}
if (get_options ("mask").size() && !mask_out) {
WARN ("-mask option has no effect if combined with -abs option and -out_masked is not used");
}
} else {
mask = get_mask (in);
if (!mask.valid() && mask_out) {
WARN ("-out_masked option ignored; no mask image provided via -mask");
mask_out = false;
}
if (!num_explicit_mechanisms) {
if (ignore_zero) {
WARN ("Option -ignorezero ignored by automatic threshold calculation");
}
try {
check_3D_nonunity (in);
} catch (Exception& e) {
throw Exception (e, "Automatic thresholding can only be performed for voxel data");
}
}
}
if (use_nan)
execute<value_type> (in, mask, output_path, abs, percentile, bottom, top, ignore_zero, all_volumes, comp, mask_out);
else
execute<bool> (in, mask, output_path, abs, percentile, bottom, top, ignore_zero, all_volumes, comp, mask_out);
if (issue_degeneracy_warning) {
WARN ("Duplicate image values surrounding threshold; "
"exact number of voxels influenced by numerical threshold may not match requested number");
}
}
|