1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "math/SH.h"
#include "memory.h"
#include "progressbar.h"
#include "thread_queue.h"
#include "image.h"
#include "algo/loop.h"
#define DOT_THRESHOLD 0.99
#define DEFAULT_NPEAKS 3
using namespace MR;
using namespace App;
void usage ()
{
AUTHOR = "J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Extract the peaks of a spherical harmonic function in each voxel";
DESCRIPTION
+ "Peaks of the spherical harmonic function in each voxel are located by "
"commencing a Newton search along each of a set of pre-specified directions";
DESCRIPTION
+ Math::SH::encoding_description;
ARGUMENTS
+ Argument ("SH", "the input image of SH coefficients.")
.type_image_in ()
+ Argument ("output",
"the output image. Each volume corresponds to the x, y & z component "
"of each peak direction vector in turn.")
.type_image_out ();
OPTIONS
+ Option ("num", "the number of peaks to extract (default: " + str(DEFAULT_NPEAKS) + ").")
+ Argument ("peaks").type_integer (0)
+ Option ("direction",
"the direction of a peak to estimate. The algorithm will attempt to "
"find the same number of peaks as have been specified using this option.")
.allow_multiple()
+ Argument ("phi").type_float()
+ Argument ("theta").type_float()
+ Option ("peaks",
"the program will try to find the peaks that most closely match those "
"in the image provided.")
+ Argument ("image").type_image_in()
+ Option ("threshold",
"only peak amplitudes greater than the threshold will be considered.")
+ Argument ("value").type_float (0.0)
+ Option ("seeds",
"specify a set of directions from which to start the multiple restarts of "
"the optimisation (by default, the built-in 60 direction set is used)")
+ Argument ("file").type_file_in()
+ Option ("mask",
"only perform computation within the specified binary brain mask image.")
+ Argument ("image").type_image_in()
+ Option ("fast",
"use lookup table to compute associated Legendre polynomials (faster, but approximate).");
REFERENCES
+ "Jeurissen, B.; Leemans, A.; Tournier, J.-D.; Jones, D.K.; Sijbers, J. "
"Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. "
"Human Brain Mapping, 2013, 34(11), 2747-2766";
}
using value_type = float;
class Direction { MEMALIGN(Direction)
public:
Direction () : a (NaN) { }
Direction (const Direction& d) : a (d.a), v (d.v) { }
Direction (value_type phi, value_type theta) : a (1.0), v (std::cos (phi) *std::sin (theta), std::sin (phi) *std::sin (theta), std::cos (theta)) { }
value_type a;
Eigen::Vector3f v;
bool operator< (const Direction& d) const {
return (a > d.a);
}
};
class Item { MEMALIGN(Item)
public:
Eigen::VectorXf data;
ssize_t pos[3];
};
class DataLoader { MEMALIGN(DataLoader)
public:
DataLoader (Image<value_type>& sh_data,
const Image<bool>& mask_data) :
sh (sh_data),
mask (mask_data),
loop (Loop("estimating peak directions", 0, 3) (sh)) { }
bool operator() (Item& item) {
if (loop) {
item.data.resize (sh.size(3));
item.pos[0] = sh.index(0);
item.pos[1] = sh.index(1);
item.pos[2] = sh.index(2);
if (mask.valid())
assign_pos_of(sh, 0, 3).to(mask);
if (mask.valid() && !mask.value()) {
for (auto l = Loop(3) (sh); l; ++l)
item.data[sh.index(3)] = NaN;
} else {
// iterates over SH coefficients
for (auto l = Loop(3) (sh); l; ++l)
item.data[sh.index(3)] = sh.value();
}
loop++;
return true;
}
return false;
}
private:
Image<value_type> sh;
Image<bool> mask;
LoopAlongAxisRangeProgress::Run<Image<value_type> > loop;
};
class Processor { MEMALIGN(Processor)
public:
Processor (Image<value_type>& dirs_data,
Eigen::Matrix<value_type, Eigen::Dynamic, 2>& directions,
int lmax,
int npeaks,
vector<Direction> true_peaks,
value_type threshold,
Image<value_type> ipeaks_data,
bool use_precomputer) :
dirs_vox (dirs_data),
dirs (directions),
lmax (lmax),
npeaks (npeaks),
true_peaks (true_peaks),
threshold (threshold),
peaks_out (npeaks),
ipeaks_vox (ipeaks_data),
precomputer (use_precomputer ? new Math::SH::PrecomputedAL<value_type> (lmax) : nullptr) { }
bool operator() (const Item& item) {
dirs_vox.index(0) = item.pos[0];
dirs_vox.index(1) = item.pos[1];
dirs_vox.index(2) = item.pos[2];
if (check_input (item)) {
for (auto l = Loop(3) (dirs_vox); l; ++l)
dirs_vox.value() = NaN;
return true;
}
vector<Direction> all_peaks;
for (size_t i = 0; i < size_t(dirs.rows()); i++) {
Direction p (dirs (i,0), dirs (i,1));
p.a = Math::SH::get_peak (item.data, lmax, p.v, precomputer);
if (std::isfinite (p.a)) {
for (size_t j = 0; j < all_peaks.size(); j++) {
if (abs (p.v.dot (all_peaks[j].v)) > DOT_THRESHOLD) {
p.a = NAN;
break;
}
}
}
if (std::isfinite (p.a) && p.a >= threshold)
all_peaks.push_back (p);
}
if (ipeaks_vox.valid()) {
ipeaks_vox.index(0) = item.pos[0];
ipeaks_vox.index(1) = item.pos[1];
ipeaks_vox.index(2) = item.pos[2];
for (int i = 0; i < npeaks; i++) {
Eigen::Vector3f p;
ipeaks_vox.index(3) = 3*i;
for (int n = 0; n < 3; n++) {
p[n] = ipeaks_vox.value();
ipeaks_vox.index(3)++;
}
p.normalize();
value_type mdot = 0.0;
for (size_t n = 0; n < all_peaks.size(); n++) {
value_type f = abs (p.dot (all_peaks[n].v));
if (f > mdot) {
mdot = f;
peaks_out[i] = all_peaks[n];
}
}
}
}
else if (true_peaks.size()) {
for (int i = 0; i < npeaks; i++) {
value_type mdot = 0.0;
for (size_t n = 0; n < all_peaks.size(); n++) {
value_type f = abs (all_peaks[n].v.dot (true_peaks[i].v));
if (f > mdot) {
mdot = f;
peaks_out[i] = all_peaks[n];
}
}
}
}
else std::partial_sort_copy (all_peaks.begin(), all_peaks.end(), peaks_out.begin(), peaks_out.end());
int actual_npeaks = std::min (npeaks, (int) all_peaks.size());
dirs_vox.index(3) = 0;
for (int n = 0; n < actual_npeaks; n++) {
dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[0];
dirs_vox.index(3)++;
dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[1];
dirs_vox.index(3)++;
dirs_vox.value() = peaks_out[n].a*peaks_out[n].v[2];
dirs_vox.index(3)++;
}
for (; dirs_vox.index(3) < 3*npeaks; dirs_vox.index(3)++) dirs_vox.value() = NaN;
return true;
}
private:
Image<value_type> dirs_vox;
Eigen::Matrix<value_type, Eigen::Dynamic, 2> dirs;
int lmax, npeaks;
vector<Direction> true_peaks;
value_type threshold;
vector<Direction> peaks_out;
Image<value_type> ipeaks_vox;
Math::SH::PrecomputedAL<value_type>* precomputer;
bool check_input (const Item& item) {
if (ipeaks_vox.valid()) {
ipeaks_vox.index(0) = item.pos[0];
ipeaks_vox.index(1) = item.pos[1];
ipeaks_vox.index(2) = item.pos[2];
ipeaks_vox.index(3) = 0;
if (std::isnan (value_type (ipeaks_vox.value())))
return true;
}
bool no_peaks = true;
for (size_t i = 0; i < size_t(item.data.size()); i++) {
if (std::isnan (item.data[i]))
return true;
if (no_peaks)
if (i && item.data[i] != 0.0)
no_peaks = false;
}
return no_peaks;
}
};
extern value_type default_directions [];
void run ()
{
auto SH_data = Image<value_type>::open (argument[0]).with_direct_io (3);
Math::SH::check (SH_data);
auto opt = get_options ("mask");
Image<bool> mask_data;
if (opt.size())
mask_data = Image<bool>::open (opt[0][0]);
opt = get_options ("seeds");
Eigen::Matrix<value_type, Eigen::Dynamic, 2> dirs;
if (opt.size())
dirs = load_matrix<value_type> (opt[0][0]);
else {
dirs = Eigen::Map<Eigen::Matrix<value_type, 60, 2> > (default_directions, 60, 2);
}
if (dirs.cols() != 2)
throw Exception ("expecting 2 columns for search directions matrix");
int npeaks = get_option_value ("num", DEFAULT_NPEAKS);
opt = get_options ("direction");
vector<Direction> true_peaks;
for (size_t n = 0; n < opt.size(); ++n) {
Direction p (Math::pi*to<float> (opt[n][0]) /180.0, Math::pi*float (opt[n][1]) /180.0);
true_peaks.push_back (p);
}
if (true_peaks.size())
npeaks = true_peaks.size();
value_type threshold = get_option_value("threshold", -INFINITY);
auto header = Header(SH_data);
header.datatype() = DataType::Float32;
opt = get_options ("peaks");
Image<value_type> ipeaks_data;
if (opt.size()) {
if (true_peaks.size())
throw Exception ("you can't specify both a peaks file and orientations to be estimated at the same time");
if (opt.size())
ipeaks_data = Image<value_type>::open(opt[0][0]);
check_dimensions (SH_data, ipeaks_data, 0, 3);
npeaks = ipeaks_data.size (3) / 3;
}
header.size(3) = 3 * npeaks;
auto peaks = Image<value_type>::create (argument[1], header);
DataLoader loader (SH_data, mask_data);
Processor processor (peaks, dirs, Math::SH::LforN (SH_data.size (3)),
npeaks, true_peaks, threshold, ipeaks_data, get_options("fast").size());
Thread::run_queue (loader, Thread::batch (Item()), Thread::multi (processor));
}
value_type default_directions [] = {
0, 0,
-3.14159, 1.3254,
-2.58185, 1.50789,
2.23616, 1.46585,
0.035637, 0.411961,
2.65836, 0.913741,
0.780743, 1.23955,
-0.240253, 1.58088,
-0.955334, 1.08447,
1.12534, 1.78765,
1.12689, 1.30126,
0.88512, 1.55615,
2.08019, 1.16222,
0.191423, 1.06076,
1.29453, 0.707568,
2.794, 1.24245,
2.02138, 0.337172,
1.59186, 1.30164,
-2.83601, 0.910221,
0.569095, 0.96362,
3.05336, 1.00206,
2.4406, 1.19129,
0.437969, 1.30795,
0.247623, 0.728643,
-0.193887, 1.0467,
-1.34638, 1.14233,
1.35977, 1.54693,
1.82433, 0.660035,
-0.766769, 1.3685,
-2.02757, 1.02063,
-0.78071, 0.667313,
-1.47543, 1.45516,
-1.10765, 1.38916,
-1.65789, 0.871848,
1.89902, 1.44647,
3.08122, 0.336433,
-2.35317, 1.25244,
2.54757, 0.586206,
-2.14697, 0.338323,
3.10764, 0.670594,
1.75238, 0.991972,
-1.21593, 0.82585,
-0.259942, 0.71572,
-1.51829, 0.549286,
2.22968, 0.851973,
0.979108, 0.954864,
1.36274, 1.04186,
-0.0104792, 1.33716,
-0.891568, 0.33526,
-2.0635, 0.68273,
-2.41353, 0.917031,
2.57199, 1.50166,
0.965936, 0.33624,
0.763244, 0.657346,
-2.61583, 0.606725,
-0.429332, 1.30226,
-2.91118, 1.56901,
-2.79822, 1.24559,
-1.70453, 1.20406,
-0.582782, 0.975235
};
|