1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "app.h"
#include "command.h"
#include "datatype.h"
#include "header.h"
#include "image.h"
#include "memory.h"
#include "progressbar.h"
#include "types.h"
#include "algo/loop.h"
#include "math/SH.h"
#include "misc/bitset.h"
using namespace MR;
using namespace App;
const char* conversions[] = { "old", "new", "force_oldtonew", "force_newtoold", nullptr };
enum conv_t { NONE, OLD, NEW, FORCE_OLDTONEW, FORCE_NEWTOOLD };
void usage ()
{
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Examine the values in spherical harmonic images to estimate (and optionally change) the SH basis used";
DESCRIPTION
+ "In previous versions of MRtrix, the convention used for storing spherical harmonic "
"coefficients was a non-orthonormal basis (the m!=0 coefficients were a factor of "
"sqrt(2) too large). This error has been rectified in newer versions of MRtrix, "
"but will cause issues if processing SH data that was generated using an older version "
"of MRtrix (or vice-versa)."
+ "This command provides a mechanism for testing the basis used in storage of image data "
"representing a spherical harmonic series per voxel, and allows the user to forcibly "
"modify the raw image data to conform to the desired basis."
+ "Note that the \"force_*\" conversion choices should only be used in cases where this "
"command has previously been unable to automatically determine the SH basis from the "
"image data, but the user themselves are confident of the SH basis of the data."
+ Math::SH::encoding_description;
ARGUMENTS
+ Argument ("SH", "the input image(s) of SH coefficients.").allow_multiple().type_image_in();
OPTIONS
+ Option ("convert", "convert the image data in-place to the desired basis; "
"options are: " + join(conversions, ",") + ".")
+ Argument ("mode").type_choice (conversions);
}
// Perform a linear regression on the power ratio in each order
// Omit l=2 - tends to be abnormally small due to non-isotropic brain-wide fibre distribution
std::pair<float, float> get_regression (const vector<float>& ratios)
{
const size_t n = ratios.size() - 1;
Eigen::VectorXf Y (n), b (2);
Eigen::MatrixXf A (n, 2);
for (size_t i = 1; i != ratios.size(); ++i) {
Y[i-1] = ratios[i];
A(i-1,0) = 1.0f;
A(i-1,1) = (2*i)+2;
}
b = (A.transpose() * A).ldlt().solve (A.transpose() * Y);
return std::make_pair (b[0], b[1]);
}
template <typename value_type>
void check_and_update (Header& H, const conv_t conversion)
{
const size_t N = H.size(3);
const size_t lmax = Math::SH::LforN (N);
// Flag which volumes are m==0 and which are not
BitSet mzero_terms (N, false);
for (size_t l = 2; l <= lmax; l += 2)
mzero_terms[Math::SH::index (l, 0)] = true;
// Open in read-write mode if there's a chance of modification
auto image = H.get_image<value_type> (true);
// Need to mask out voxels where the DC term is zero
Header header_mask (H);
header_mask.ndim() = 3;
header_mask.datatype() = DataType::Bit;
auto mask = Image<bool>::scratch (header_mask);
size_t voxel_count = 0;
{
for (auto i = Loop ("Masking image based on DC term", image, 0, 3) (image, mask); i; ++i) {
const value_type value = image.value();
if (value && std::isfinite (value)) {
mask.value() = true;
++voxel_count;
} else {
mask.value() = false;
}
}
}
INFO (str(voxel_count) + " voxels to be included in calculations");
// Get sums independently for each l
// Each order has a different power, and a different number of m!=0 volumes.
// Therefore, calculate the mean-square intensity for the m==0 and m!=0
// volumes independently, and report ratio for each harmonic order
std::unique_ptr<ProgressBar> progress;
if (App::log_level > 0 && App::log_level < 2)
progress.reset (new ProgressBar ("Evaluating SH basis of image \"" + H.name() + "\"", N-1));
vector<float> ratios;
for (size_t l = 2; l <= lmax; l += 2) {
double mzero_sum = 0.0, mnonzero_sum = 0.0;
for (image.index(3) = ssize_t (Math::SH::NforL(l-2)); image.index(3) != ssize_t (Math::SH::NforL(l)); ++image.index(3)) {
double sum = 0.0;
for (auto i = Loop (image, 0, 3) (image, mask); i; ++i) {
if (mask.value())
sum += Math::pow2 (value_type(image.value()));
}
if (mzero_terms[image.index(3)]) {
mzero_sum += sum;
DEBUG ("Volume " + str(image.index(3)) + ", m==0, sum " + str(sum));
} else {
mnonzero_sum += sum;
DEBUG ("Volume " + str(image.index(3)) + ", m!=0, sum " + str(sum));
}
if (progress)
++*progress;
}
const double mnonzero_MSoS = mnonzero_sum / (2.0 * l);
const float power_ratio = mnonzero_MSoS / mzero_sum;
ratios.push_back (power_ratio);
INFO ("SH order " + str(l) + ", ratio of m!=0 to m==0 power: " + str(power_ratio) +
", m==0 power: " + str (mzero_sum));
}
if (progress)
progress.reset (nullptr);
// First is ratio to be used for SH basis decision, second is gradient of regression
std::pair<float, float> regression = std::make_pair (0.0f, 0.0f);
size_t l_for_decision;
float power_ratio;
// The gradient will change depending on the current basis, so the threshold needs to also
// The gradient is as a function of l, not of even orders
float grad_threshold = 0.02;
switch (lmax) {
// Lmax == 2: only one order to use
case 2:
power_ratio = ratios.front();
l_for_decision = 2;
break;
// Lmax = 4: Use l=4 order to determine SH basis, can't check gradient since l=2 is untrustworthy
case 4:
power_ratio = ratios.back();
l_for_decision = 4;
break;
// Lmax = 6: Use l=4 order to determine SH basis, but checking the gradient is not reliable:
// artificially double the threshold so the power ratio at l=6 needs to be substantially
// different to l=4 to throw a warning
case 6:
regression = std::make_pair (ratios[1] - 2*(ratios[2]-ratios[1]), 0.5*(ratios[2]-ratios[1]));
power_ratio = ratios[1];
l_for_decision = 4;
grad_threshold *= 2.0;
break;
// Lmax >= 8: Do a linear regression from l=4 to l=lmax, project back to l=0
// (this is a more reliable quantification on poor data than l=4 alone)
default:
regression = get_regression (ratios);
power_ratio = regression.first;
l_for_decision = 0;
break;
}
// If the gradient is in fact positive (i.e. power ration increases for larger l), use the
// regression to pull the power ratio from l=lmax
if (regression.second > 0.0) {
l_for_decision = lmax;
power_ratio = regression.first + (lmax * regression.second);
}
DEBUG ("Power ratio for assessing SH basis is " + str(power_ratio) + " as " + (lmax < 8 ? "derived from" : "regressed to") + " l=" + str(l_for_decision));
// Threshold to make decision on what basis the data are currently stored in
value_type multiplier = 1.0;
if ((power_ratio > (5.0/3.0)) && (power_ratio < (7.0/3.0))) {
CONSOLE ("Image \"" + str(H.name()) + "\" appears to be in the old non-orthonormal basis");
switch (conversion) {
case NONE: break;
case OLD: break;
case NEW: multiplier = Math::sqrt1_2; break;
case FORCE_OLDTONEW: multiplier = Math::sqrt1_2; break;
case FORCE_NEWTOOLD: WARN ("Refusing to convert image \"" + H.name() + "\" from new to old basis, as data appear to already be in the old non-orthonormal basis"); return;
}
grad_threshold *= 2.0;
} else if ((power_ratio > (2.0/3.0)) && (power_ratio < (4.0/3.0))) {
CONSOLE ("Image \"" + str(H.name()) + "\" appears to be in the new orthonormal basis");
switch (conversion) {
case NONE: break;
case OLD: multiplier = Math::sqrt2; break;
case NEW: break;
case FORCE_OLDTONEW: WARN ("Refusing to convert image \"" + H.name() + "\" from old to new basis, as data appear to already be in the new orthonormal basis"); return;
case FORCE_NEWTOOLD: multiplier = Math::sqrt2; break;
}
} else {
multiplier = 0.0;
WARN ("Cannot make unambiguous decision on SH basis of image \"" + H.name()
+ "\" (power ratio " + (lmax < 8 ? "in" : "regressed to") + " " + str(l_for_decision) + " is " + str(power_ratio) + ")");
if (conversion == FORCE_OLDTONEW) {
WARN ("Forcing conversion of image \"" + H.name() + "\" from old to new SH basis on user request; however NO GUARANTEE IS PROVIDED on appropriateness of this conversion!");
multiplier = Math::sqrt1_2;
} else if (conversion == FORCE_NEWTOOLD) {
WARN ("Forcing conversion of image \"" + H.name() + "\" from new to old SH basis on user request; however NO GUARANTEE IS PROVIDED on appropriateness of this conversion!");
multiplier = Math::sqrt2;
}
}
// Decide whether the user needs to be warned about a poor diffusion encoding scheme
if (regression.second)
DEBUG ("Gradient of regression is " + str(regression.second) + "; threshold is " + str(grad_threshold));
if (abs(regression.second) > grad_threshold) {
WARN ("Image \"" + H.name() + "\" may have been derived from poor directional encoding, or have some other underlying data problem");
WARN ("(m!=0 to m==0 power ratio changing by " + str(2.0*regression.second) + " per even order)");
}
// Adjust the image data in-place if necessary
if (multiplier && (multiplier != 1.0)) {
ProgressBar progress ("Modifying SH basis of image \"" + H.name() + "\"", N-1);
for (image.index(3) = 1; image.index(3) != ssize_t(N); ++image.index(3)) {
if (!mzero_terms[image.index(3)]) {
for (auto i = Loop (image, 0, 3) (image); i; ++i)
image.value() *= multiplier;
}
++progress;
}
} else if (multiplier && (conversion != NONE)) {
INFO ("Image \"" + H.name() + "\" already in desired basis; nothing to do");
}
}
void run ()
{
conv_t conversion = NONE;
auto opt = get_options ("convert");
if (opt.size()) {
switch (int(opt[0][0])) {
case 0: conversion = OLD; break;
case 1: conversion = NEW; break;
case 2: conversion = FORCE_OLDTONEW; break;
case 3: conversion = FORCE_NEWTOOLD; break;
default: assert (0); break;
}
}
for (vector<ParsedArgument>::const_iterator i = argument.begin(); i != argument.end(); ++i) {
const std::string path = *i;
Header H = Header::open (path);
try {
Math::SH::check (H);
}
catch (Exception& E) {
E.display(0);
continue;
}
if (H.datatype().bytes() == 4)
check_and_update<float> (H, conversion);
else
check_and_update<double> (H, conversion);
}
}
|