1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "memory.h"
#include "progressbar.h"
#include "algo/threaded_loop.h"
#include "image.h"
#include "math/SH.h"
#include "math/ZSH.h"
using namespace MR;
using namespace App;
void usage ()
{
AUTHOR = "David Raffelt (david.raffelt@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Perform spherical convolution";
DESCRIPTION
+ "Provided with matching pairs of response function and ODF images "
"(containing SH coefficients), perform spherical convolution to provide the "
"corresponding SH coefficients of the signal."
+ "If multiple pairs of inputs are provided, their contributions will be "
"summed into a single output."
+ "If the responses are multi-shell (with one line of coefficients per "
"shell), the output will be a 5-dimensional image, with the SH "
"coefficients of the signal in each shell stored at different indices "
"along the 5th dimension."
+ Math::SH::encoding_description;
DESCRIPTION
+ Math::SH::encoding_description;
ARGUMENTS
+ Argument ("odf response", "pairs of input ODF image and corresponding responses").allow_multiple()
+ Argument ("SH_out", "the output spherical harmonics coefficients image.").type_image_out ();
OPTIONS
+ DataType::options()
+ Stride::Options;
}
using value_type = float;
class SConvFunctor { MEMALIGN(SConvFunctor)
public:
SConvFunctor (const vector<Eigen::MatrixXd>& responses, vector<Image<value_type>>& inputs) :
responses (responses),
inputs (inputs) { }
void operator() (Image<value_type>& output)
{
for (size_t n = 0; n < inputs.size(); ++n) {
assign_pos_of (output, 0, 3).to (inputs[n]);
in = inputs[n].row (3);
for (ssize_t s = 0; s < responses[n].rows(); ++s) {
Math::SH::sconv (out, responses[n].row(s), in);
if (output.ndim() > 4)
output.index(4) = s;
for (ssize_t k = 0; k < out.size(); ++k) {
output.index(3) = k;
output.value() += out[k];
}
}
}
}
protected:
const vector<Eigen::MatrixXd>& responses;
vector<Image<value_type>> inputs;
Eigen::VectorXd in, out;
};
void run()
{
if (!(argument.size() & size_t(1U)))
throw Exception ("unexpected number of arguments");
vector<Image<value_type>> inputs ((argument.size() - 1) / 2);
vector<Eigen::MatrixXd> responses (inputs.size());
size_t lmax = 0;
for (size_t n = 0; n < inputs.size(); ++n) {
inputs[n] = Image<value_type>::open (argument[2*n]);
Math::SH::check (inputs[n]);
if (inputs[n].ndim() > 4 && inputs[n].size(4) > 1)
throw Exception ("input ODF contains more than 4 dimensions");
responses[n] = load_matrix (argument[2*n+1]);
responses[n].conservativeResizeLike (Eigen::MatrixXd::Zero (responses[n].rows(), Math::ZSH::NforL (Math::SH::LforN (inputs[n].size (3)))));
lmax = std::max (Math::ZSH::LforN (responses[n].cols()), lmax);
for (ssize_t k = 0; k < responses[n].rows(); ++k)
responses[n].row(k) = Math::ZSH::ZSH2RH (responses[n].row(k));
if (n) {
if (responses[n].rows() != responses[0].rows())
throw Exception ("number of shells differs between response files");
check_dimensions (inputs[n], inputs[0], 0, 3);
}
}
Header header (inputs[0]);
if (responses[0].rows() > 1) {
header.ndim() = 5;
header.size(4) = responses[0].rows();
}
else
header.ndim() = 4;
header.size(3) = Math::SH::NforL (lmax);
Stride::set_from_command_line (header, Stride::contiguous_along_axis (3, header));
header.datatype() = DataType::from_command_line (DataType::Float32);
auto output = Image<value_type>::create (argument[argument.size()-1], header);
SConvFunctor sconv (responses, inputs);
ThreadedLoop ("performing spherical convolution", inputs[0], 0, 3).run (sconv, output);
}
|