File: shconv.cpp

package info (click to toggle)
mrtrix3 3.0.8-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 15,300 kB
  • sloc: cpp: 130,470; python: 9,603; sh: 597; makefile: 62; xml: 47
file content (144 lines) | stat: -rw-r--r-- 4,610 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * Covered Software is provided under this License on an "as is"
 * basis, without warranty of any kind, either expressed, implied, or
 * statutory, including, without limitation, warranties that the
 * Covered Software is free of defects, merchantable, fit for a
 * particular purpose or non-infringing.
 * See the Mozilla Public License v. 2.0 for more details.
 *
 * For more details, see http://www.mrtrix.org/.
 */

#include "command.h"
#include "memory.h"
#include "progressbar.h"
#include "algo/threaded_loop.h"
#include "image.h"
#include "math/SH.h"
#include "math/ZSH.h"

using namespace MR;
using namespace App;


void usage ()
{
  AUTHOR = "David Raffelt (david.raffelt@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";

  SYNOPSIS = "Perform spherical convolution";

  DESCRIPTION
    + "Provided with matching pairs of response function and ODF images "
      "(containing SH coefficients), perform spherical convolution to provide the "
      "corresponding SH coefficients of the signal."
    + "If multiple pairs of inputs are provided, their contributions will be "
       "summed into a single output."
    +  "If the responses are multi-shell (with one line of coefficients per "
       "shell), the output will be a 5-dimensional image, with the SH "
       "coefficients of the signal in each shell stored at different indices "
       "along the 5th dimension."
    + Math::SH::encoding_description;

  DESCRIPTION
  + Math::SH::encoding_description;

  ARGUMENTS
    + Argument ("odf response", "pairs of input ODF image and corresponding responses").allow_multiple()
    + Argument ("SH_out", "the output spherical harmonics coefficients image.").type_image_out ();

  OPTIONS
    + DataType::options()
    + Stride::Options;
}



using value_type = float;


class SConvFunctor { MEMALIGN(SConvFunctor)
  public:
  SConvFunctor (const vector<Eigen::MatrixXd>& responses, vector<Image<value_type>>& inputs) :
    responses (responses),
    inputs (inputs) { }

    void operator() (Image<value_type>& output)
    {
      for (size_t n = 0; n < inputs.size(); ++n) {
        assign_pos_of (output, 0, 3).to (inputs[n]);
        in = inputs[n].row (3);
        for (ssize_t s = 0; s < responses[n].rows(); ++s) {
          Math::SH::sconv (out, responses[n].row(s), in);
          if (output.ndim() > 4)
            output.index(4) = s;
          for (ssize_t k = 0; k < out.size(); ++k) {
            output.index(3) = k;
            output.value() += out[k];
          }
        }
      }
    }

  protected:
    const vector<Eigen::MatrixXd>& responses;
    vector<Image<value_type>> inputs;
    Eigen::VectorXd in, out;

};






void run()
{
  if (!(argument.size() & size_t(1U)))
    throw Exception ("unexpected number of arguments");

  vector<Image<value_type>> inputs ((argument.size() - 1) / 2);
  vector<Eigen::MatrixXd> responses (inputs.size());

  size_t lmax = 0;
  for (size_t n = 0; n < inputs.size(); ++n) {
    inputs[n] = Image<value_type>::open (argument[2*n]);
    Math::SH::check (inputs[n]);
    if (inputs[n].ndim() > 4 && inputs[n].size(4) > 1)
      throw Exception ("input ODF contains more than 4 dimensions");

    responses[n] = load_matrix (argument[2*n+1]);
    responses[n].conservativeResizeLike (Eigen::MatrixXd::Zero (responses[n].rows(), Math::ZSH::NforL (Math::SH::LforN (inputs[n].size (3)))));
    lmax = std::max (Math::ZSH::LforN (responses[n].cols()), lmax);

    for (ssize_t k = 0; k < responses[n].rows(); ++k)
      responses[n].row(k) = Math::ZSH::ZSH2RH (responses[n].row(k));

    if (n) {
      if (responses[n].rows() != responses[0].rows())
        throw Exception ("number of shells differs between response files");
      check_dimensions (inputs[n], inputs[0], 0, 3);
    }
  }


  Header header (inputs[0]);
  if (responses[0].rows() > 1) {
    header.ndim() = 5;
    header.size(4) = responses[0].rows();
  }
  else
    header.ndim() = 4;
  header.size(3) = Math::SH::NforL (lmax);
  Stride::set_from_command_line (header, Stride::contiguous_along_axis (3, header));
  header.datatype() = DataType::from_command_line (DataType::Float32);

  auto output = Image<value_type>::create (argument[argument.size()-1], header);

  SConvFunctor sconv (responses, inputs);
  ThreadedLoop ("performing spherical convolution", inputs[0], 0, 3).run (sconv, output);
}