1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "exception.h"
#include "header.h"
#include "image.h"
#include "progressbar.h"
#include "thread.h"
#include "thread_queue.h"
#include "transform.h"
#include "dwi/tractography/file.h"
#include "dwi/tractography/properties.h"
#include "dwi/tractography/mapping/loader.h"
#include "dwi/tractography/mapping/mapper.h"
#include "dwi/tractography/mapping/mapping.h"
#include "dwi/tractography/mapping/voxel.h"
#include "dwi/tractography/mapping/writer.h"
#define MAX_VOXEL_STEP_RATIO 0.333
using namespace MR;
using namespace App;
using namespace MR::DWI;
using namespace MR::DWI::Tractography;
using namespace MR::DWI::Tractography::Mapping;
const char* windows[] = { "rectangle", "triangle", "cosine", "hann", "hamming", "lanczos", nullptr };
void usage () {
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Perform the Track-Weighted Dynamic Functional Connectivity (TW-dFC) method";
DESCRIPTION
+ "This command generates a Track-Weighted Image (TWI), where the "
"contribution from each streamline to the image is the Pearson "
"correlation between the fMRI time series at the streamline endpoints."
+ "The output image can be generated in one of two ways "
"(note that one of these two command-line options MUST be provided): "
+ "- \"Static\" functional connectivity (-static option): "
"Each streamline contributes to a static 3D output image based on the "
"correlation between the signals at the streamline endpoints using the "
"entirety of the input time series."
+ "- \"Dynamic\" functional connectivity (-dynamic option): "
"The output image is a 4D image, with the same number of volumes as "
"the input fMRI time series. For each volume, the contribution from "
"each streamline is calculated based on a finite-width sliding time "
"window, centred at the timepoint corresponding to that volume."
+ "Note that the -backtrack option in this command is similar, but not precisely "
"equivalent, to back-tracking as can be used with Anatomically-Constrained "
"Tractography (ACT) in the tckgen command. However, here the feature does not "
"change the streamlines trajectories in any way; it simply enables detection of "
"the fact that the input fMRI image may not contain a valid timeseries underneath "
"the streamline endpoint, and where this occurs, searches from the streamline "
"endpoint inwards along the streamline trajectory in search of a valid "
"timeseries to sample from the input image.";
ARGUMENTS
+ Argument ("tracks", "the input track file.").type_file_in()
+ Argument ("fmri", "the pre-processed fMRI time series").type_image_in()
+ Argument ("output", "the output TW-dFC image").type_image_out();
OPTIONS
+ OptionGroup ("Options for toggling between static and dynamic TW-dFC methods; "
"note that one of these options MUST be provided")
+ Option ("static", "generate a \"static\" (3D) output image.")
+ Option ("dynamic", "generate a \"dynamic\" (4D) output image; "
"must additionally provide the shape and width (in volumes) of the sliding window.")
+ Argument ("shape").type_choice (windows)
+ Argument ("width").type_integer (3)
+ OptionGroup ("Options for setting the properties of the output image")
+ Option ("template",
"an image file to be used as a template for the output (the output image "
"will have the same transform and field of view).")
+ Argument ("image").type_image_in()
+ Option ("vox",
"provide either an isotropic voxel size (in mm), or comma-separated list "
"of 3 voxel dimensions.")
+ Argument ("size").type_sequence_float()
+ Option ("stat_vox",
"define the statistic for choosing the final voxel intensities for a given contrast "
"type given the individual values from the tracks passing through each voxel\n"
"Options are: " + join(voxel_statistics, ", ") + " (default: mean)")
+ Argument ("type").type_choice (voxel_statistics)
+ OptionGroup ("Other options for affecting the streamline sampling & mapping behaviour")
+ Option ("backtrack",
"if no valid timeseries is found at the streamline endpoint, back-track along "
"the streamline trajectory until a valid timeseries is found")
+ Option ("upsample",
"upsample the tracks by some ratio using Hermite interpolation before mapping "
"(if omitted, an appropriate ratio will be determined automatically)")
+ Argument ("factor").type_integer (1);
REFERENCES
+ "Calamante, F.; Smith, R.E.; Liang, X.; Zalesky, A.; Connelly, A " // Internal
"Track-weighted dynamic functional connectivity (TW-dFC): a new method to study time-resolved functional connectivity. "
"Brain Struct Funct, 2017, doi: 10.1007/s00429-017-1431-1";
}
// This class is similar to Mapping::MapWriter, but doesn't write to a HDD file on close
// Instead, the one timepoint volume generated during this iteration is written
// into the one large buffer that contains the entire TW-dFC time series
class Receiver
{ MEMALIGN(Receiver)
public:
Receiver (const Header& header, const vox_stat_t stat_vox) :
buffer (Image<float>::scratch (header, "TW-dFC scratch buffer")),
vox_stat (stat_vox)
{
if (vox_stat == V_MIN) {
for (auto l = Loop(buffer) (buffer); l; ++l)
buffer.value() = std::numeric_limits<float>::infinity();
} else if (vox_stat == V_MAX) {
for (auto l = Loop(buffer) (buffer); l; ++l)
buffer.value() = -std::numeric_limits<float>::infinity();
}
}
bool operator() (const Mapping::SetVoxel&);
void scale_by_count (Image<uint32_t>&);
void write (Image<float>&);
private:
Image<float> buffer;
const vox_stat_t vox_stat;
};
bool Receiver::operator() (const Mapping::SetVoxel& in)
{
const float factor = in.factor;
for (const auto& i : in) {
assign_pos_of (i, 0, 3).to (buffer);
switch (vox_stat) {
case V_SUM: buffer.value() += factor; break;
case V_MIN: buffer.value() = std::min (float(buffer.value()), factor); break;
case V_MAX: buffer.value() = std::max (float(buffer.value()), factor); break;
case V_MEAN: buffer.value() += factor; break;
// Unlike Mapping::MapWriter, don't need to deal with counts here
}
}
return true;
}
void Receiver::scale_by_count (Image<uint32_t>& counts)
{
assert (dimensions_match (buffer, counts, 0, 3));
for (auto l = Loop(buffer) (buffer, counts); l; ++l) {
if (counts.value())
buffer.value() /= float(counts.value());
else
buffer.value() = 0.0f;
}
}
void Receiver::write (Image<float>& out)
{
for (auto l = Loop(buffer) (buffer, out); l; ++l)
out.value() = buffer.value();
}
// Separate class for generating TDI i.e. receive SetVoxel & write directly to counts
class Count_receiver
{ MEMALIGN(Count_receiver)
public:
Count_receiver (Image<uint32_t>& out) :
v (out) { }
bool operator() (const Mapping::SetVoxel& in) {
for (const auto& i : in) {
assign_pos_of (i, 0, 3).to (v);
v.value() = v.value() + 1;
}
return true;
}
private:
Image<uint32_t> v;
};
void run ()
{
bool is_static = get_options ("static").size();
vector<float> window;
auto opt = get_options ("dynamic");
if (opt.size()) {
if (is_static)
throw Exception ("Do not specify both -static and -dynamic options");
// Generate the window filter
const int window_shape = opt[0][0];
const ssize_t window_width = opt[0][1];
if (!(window_width % 2))
throw Exception ("Width of sliding time window must be an odd integer");
window.resize (window_width);
const ssize_t halfwidth = (window_width+1) / 2;
const ssize_t centre = (window_width-1) / 2; // Element at centre of the window
switch (window_shape) {
case 0: // rectangular
window.assign (window_width, 1.0);
break;
case 1: // triangle
for (ssize_t i = 0; i != window_width; ++i)
window[i] = 1.0 - (abs (i - centre) / default_type(halfwidth));
break;
case 2: // cosine
for (ssize_t i = 0; i != window_width; ++i)
window[i] = std::sin (i * Math::pi / default_type(window_width - 1));
break;
case 3: // hann
for (ssize_t i = 0; i != window_width; ++i)
window[i] = 0.5 * (1.0 - std::cos (2.0 * Math::pi * i / default_type(window_width - 1)));
break;
case 4: // hamming
for (ssize_t i = 0; i != window_width; ++i)
window[i] = 0.53836 - (0.46164 * std::cos (2.0 * Math::pi * i / default_type(window_width - 1)));
break;
case 5: // lanczos
for (ssize_t i = 0; i != window_width; ++i) {
const default_type v = 2.0 * Math::pi * abs (i - centre) / default_type(window_width - 1);
window[i] = v ? std::max (0.0, (std::sin (v) / v)) : 1.0;
}
break;
default:
throw Exception ("Unsupported sliding window shape");
}
} else if (!is_static) {
throw Exception ("Either the -static or -dynamic option must be provided");
}
const std::string tck_path = argument[0];
Tractography::Properties properties;
{
// Just get the properties for now; will re-instantiate the reader multiple times later
// TODO Constructor for properties using the file path?
Tractography::Reader<float> tck_file (tck_path, properties);
}
const size_t num_tracks = properties["count"].empty() ? 0 : to<size_t> (properties["count"]);
Image<float> fmri_image (Image<float>::open (argument[1]).with_direct_io(3));
vector<default_type> voxel_size;
opt = get_options("vox");
if (opt.size())
voxel_size = parse_floats (opt[0][0]);
if (voxel_size.size() == 1)
voxel_size.assign (3, voxel_size.front());
else if (!voxel_size.empty() && voxel_size.size() != 3)
throw Exception ("voxel size must either be a single isotropic value, or a list of 3 comma-separated voxel dimensions");
if (!voxel_size.empty())
INFO ("creating image with voxel dimensions [ " + str(voxel_size[0]) + " " + str(voxel_size[1]) + " " + str(voxel_size[2]) + " ]");
Header header;
opt = get_options ("template");
if (opt.size()) {
header = Header::open (opt[0][0]);
if (!voxel_size.empty())
Mapping::oversample_header (header, voxel_size);
} else {
if (voxel_size.empty())
throw Exception ("please specify either a template image using the -template option, or the desired voxel size using the -vox option");
Mapping::generate_header (header, argument[0], voxel_size);
}
header.datatype() = DataType::Float32;
header.datatype().set_byte_order_native();
if (is_static) {
header.ndim() = 3;
} else {
header.ndim() = 4;
header.size(3) = fmri_image.size(3);
}
add_line (header.keyval()["comments"], "TW-dFC image");
size_t upsample_ratio;
opt = get_options ("upsample");
if (opt.size()) {
upsample_ratio = opt[0][0];
INFO ("track interpolation factor manually set to " + str(upsample_ratio));
} else {
try {
upsample_ratio = determine_upsample_ratio (header, properties, MAX_VOXEL_STEP_RATIO);
INFO ("track interpolation factor automatically set to " + str(upsample_ratio));
} catch (Exception& e) {
e.push_back ("Try using -upsample option to explicitly set the streamline upsampling ratio;");
e.push_back ("generally recommend a value of around (3 x step_size / voxel_size)");
throw e;
}
}
opt = get_options ("stat_vox");
const vox_stat_t stat_vox = opt.size() ? vox_stat_t(int(opt[0][0])) : V_MEAN;
Header H_3D (header);
H_3D.ndim() = 3;
if (is_static) {
Tractography::Reader<float> tck_file (tck_path, properties);
Mapping::TrackLoader loader (tck_file, num_tracks, "Generating (static) TW-dFC image");
Mapping::TrackMapperTWI mapper (H_3D, SCALAR_MAP, ENDS_CORR);
mapper.set_upsample_ratio (upsample_ratio);
mapper.add_twdfc_static_image (fmri_image);
Mapping::MapWriter<float> writer (header, argument[2], stat_vox);
Thread::run_queue (loader, Thread::batch (Tractography::Streamline<>()), Thread::multi (mapper), Thread::batch (Mapping::SetVoxel()), writer);
writer.finalise();
} else {
Image<uint32_t> counts;
if (stat_vox == V_MEAN) {
counts = Image<uint32_t>::scratch (H_3D, "Track count scratch buffer");
Tractography::Reader<float> tck_file (tck_path, properties);
Mapping::TrackLoader loader (tck_file, num_tracks, "Calculating initial TDI");
Mapping::TrackMapperBase mapper (H_3D);
mapper.set_upsample_ratio (upsample_ratio);
Count_receiver receiver (counts);
Thread::run_queue (loader, Thread::batch (Tractography::Streamline<>()), Thread::multi (mapper), Thread::batch (Mapping::SetVoxel()), receiver);
}
Image<float> out_image (Image<float>::create (argument[2], header));
ProgressBar progress ("Generating TW-dFC image", header.size(3));
for (ssize_t timepoint = 0; timepoint != header.size(3); ++timepoint) {
{
LogLevelLatch latch (0);
Tractography::Reader<float> tck_file (tck_path, properties);
Mapping::TrackLoader loader (tck_file);
Mapping::TrackMapperTWI mapper (H_3D, SCALAR_MAP, ENDS_CORR);
mapper.set_upsample_ratio (upsample_ratio);
mapper.add_twdfc_dynamic_image (fmri_image, window, timepoint);
Receiver receiver (H_3D, stat_vox);
Thread::run_queue (loader, Thread::batch (Tractography::Streamline<>()), Thread::multi (mapper), Thread::batch (Mapping::SetVoxel()), receiver);
if (stat_vox == V_MEAN)
receiver.scale_by_count (counts);
out_image.index(3) = timepoint;
receiver.write (out_image);
}
++progress;
}
}
}
|