1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include <set>
#include "command.h"
#include "image.h"
#include "memory.h"
#include "progressbar.h"
#include "thread_queue.h"
#include "types.h"
#include "dwi/gradient.h"
#include "dwi/tractography/file.h"
#include "dwi/tractography/properties.h"
#include "dwi/tractography/weights.h"
#include "dwi/tractography/mapping/loader.h"
#include "dwi/tractography/mapping/mapper.h"
#include "dwi/tractography/mapping/mapping.h"
#include "dwi/tractography/mapping/voxel.h"
#include "dwi/tractography/mapping/writer.h"
#include "dwi/tractography/mapping/gaussian/mapper.h"
#include "dwi/tractography/mapping/gaussian/voxel.h"
using namespace MR;
using namespace App;
using namespace MR::DWI;
using namespace MR::DWI::Tractography;
using namespace MR::DWI::Tractography::Mapping;
const OptionGroup OutputHeaderOption = OptionGroup ("Options for the header of the output image")
+ Option ("template",
"an image file to be used as a template for the output (the output image "
"will have the same transform and field of view).")
+ Argument ("image").type_image_in()
+ Option ("vox",
"provide either an isotropic voxel size (in mm), or comma-separated list "
"of 3 voxel dimensions.")
+ Argument ("size").type_sequence_float()
+ Option ("datatype",
"specify output image data type.")
+ Argument ("spec").type_choice (DataType::identifiers);
const OptionGroup OutputDimOption = OptionGroup ("Options for the dimensionality of the output image")
+ Option ("dec",
"perform track mapping in directionally-encoded colour (DEC) space")
+ Option ("dixel",
"map streamlines to dixels within each voxel; requires either a number of dixels "
"(references an internal direction set), or a path to a text file containing a "
"set of directions stored as azimuth/elevation pairs")
+ Argument ("path").type_various()
+ Option ("tod",
"generate a Track Orientation Distribution (TOD) in each voxel; need to specify the maximum "
"spherical harmonic degree lmax to use when generating Apodised Point Spread Functions")
+ Argument ("lmax").type_integer (2, 20);
const OptionGroup TWIOption = OptionGroup ("Options for the TWI image contrast properties")
+ Option ("contrast",
"define the desired form of contrast for the output image\n"
"Options are: " + join(contrasts, ", ") + " (default: tdi)")
+ Argument ("type").type_choice (contrasts)
+ Option ("image",
"provide the scalar image map for generating images with 'scalar_map' / 'scalar_map_count' contrast, or the spherical harmonics image for 'fod_amp' contrast")
+ Argument ("image").type_image_in()
+ Option ("vector_file",
"provide the vector data file for generating images with 'vector_file' contrast")
+ Argument ("path").type_file_in()
+ Option ("stat_vox",
"define the statistic for choosing the final voxel intensities for a given contrast "
"type given the individual values from the tracks passing through each voxel. \n"
"Options are: " + join(voxel_statistics, ", ") + " (default: sum)")
+ Argument ("type").type_choice (voxel_statistics)
+ Option ("stat_tck",
"define the statistic for choosing the contribution to be made by each streamline as a "
"function of the samples taken along their lengths. \n"
"Only has an effect for 'scalar_map', 'fod_amp' and 'curvature' contrast types. \n"
"Options are: " + join(track_statistics, ", ") + " (default: mean)")
+ Argument ("type").type_choice (track_statistics)
+ Option ("fwhm_tck",
"when using gaussian-smoothed per-track statistic, specify the "
"desired full-width half-maximum of the Gaussian smoothing kernel (in mm)")
+ Argument ("value").type_float (1e-6)
+ Option ("map_zero",
"if a streamline has zero contribution based on the contrast & statistic, typically it is not mapped; "
"use this option to still contribute to the map even if this is the case "
"(these non-contributing voxels can then influence the mean value in each voxel of the map)")
+ Option ("backtrack",
"when using -stat_tck ends_*, if the streamline endpoint is outside the FoV, backtrack along "
"the streamline trajectory until an appropriate point is found");
const OptionGroup MappingOption = OptionGroup ("Options for the streamline-to-voxel mapping mechanism")
+ Option ("upsample",
"upsample the tracks by some ratio using Hermite interpolation before mappping\n"
"(If omitted, an appropriate ratio will be determined automatically)")
+ Argument ("factor").type_integer (1)
+ Option ("precise",
"use a more precise streamline mapping strategy, that accurately quantifies the length through each voxel "
"(these lengths are then taken into account during TWI calculation)")
+ Option ("ends_only",
"only map the streamline endpoints to the image");
void usage () {
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au) and J-Donald Tournier (jdtournier@gmail.com)";
SYNOPSIS = "Use track data as a form of contrast for producing a high-resolution image";
DESCRIPTION
+ "Note: if you run into limitations with RAM usage, make sure you output the "
"results to a .mif file or .mih / .dat file pair - this will avoid the allocation "
"of an additional buffer to store the output for write-out.";
REFERENCES
+ "* For TDI or DEC TDI:\n"
"Calamante, F.; Tournier, J.-D.; Jackson, G. D. & Connelly, A. " // Internal
"Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. "
"NeuroImage, 2010, 53, 1233-1243"
+ "* If using -contrast length and -stat_vox mean:\n"
"Pannek, K.; Mathias, J. L.; Bigler, E. D.; Brown, G.; Taylor, J. D. & Rose, S. E. "
"The average pathlength map: A diffusion MRI tractography-derived index for studying brain pathology. "
"NeuroImage, 2011, 55, 133-141"
+ "* If using -dixel option with TDI contrast only:\n"
"Smith, R.E., Tournier, J-D., Calamante, F., Connelly, A. " // Internal
"A novel paradigm for automated segmentation of very large whole-brain probabilistic tractography data sets. "
"In proc. ISMRM, 2011, 19, 673"
+ "* If using -dixel option with any other contrast:\n"
"Pannek, K., Raffelt, D., Salvado, O., Rose, S. " // Internal
"Incorporating directional information in diffusion tractography derived maps: angular track imaging (ATI). "
"In Proc. ISMRM, 2012, 20, 1912"
+ "* If using -tod option:\n"
"Dhollander, T., Emsell, L., Van Hecke, W., Maes, F., Sunaert, S., Suetens, P. " // Internal
"Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography. "
"NeuroImage, 2014, 94, 312-336"
+ "* If using other contrasts / statistics:\n"
"Calamante, F.; Tournier, J.-D.; Smith, R. E. & Connelly, A. " // Internal
"A generalised framework for super-resolution track-weighted imaging. "
"NeuroImage, 2012, 59, 2494-2503"
+ "* If using -precise mapping option:\n"
"Smith, R. E.; Tournier, J.-D.; Calamante, F. & Connelly, A. " // Internal
"SIFT: Spherical-deconvolution informed filtering of tractograms. "
"NeuroImage, 2013, 67, 298-312 (Appendix 3)";
ARGUMENTS
+ Argument ("tracks", "the input track file.").type_file_in()
+ Argument ("output", "the output track-weighted image").type_image_out();
OPTIONS
+ OutputHeaderOption
+ OutputDimOption
+ TWIOption
+ MappingOption
+ Tractography::TrackWeightsInOption;
}
MapWriterBase* make_writer (Header& H, const std::string& name, const vox_stat_t stat_vox, const writer_dim dim)
{
MapWriterBase* writer = nullptr;
const uint8_t dt = uint8_t(H.datatype()()) & DataType::Type;
if (dt == DataType::Bit)
writer = new MapWriter<bool> (H, name, stat_vox, dim);
else if (dt == DataType::UInt8)
writer = new MapWriter<uint8_t> (H, name, stat_vox, dim);
else if (dt == DataType::UInt16)
writer = new MapWriter<uint16_t> (H, name, stat_vox, dim);
else if (dt == DataType::UInt32 || dt == DataType::UInt64)
writer = new MapWriter<uint32_t> (H, name, stat_vox, dim);
else if (dt == DataType::Float32 || dt == DataType::Float64)
writer = new MapWriter<float> (H, name, stat_vox, dim);
else
throw Exception ("Unsupported data type in image header");
return writer;
}
DataType determine_datatype (const DataType current_dt, const contrast_t contrast, const DataType default_dt, const bool precise)
{
if (current_dt == DataType::Undefined) {
return default_dt;
} else if ((default_dt.is_floating_point() || precise) && !current_dt.is_floating_point()) {
WARN ("Cannot use non-floating-point datatype with " + str(Mapping::contrasts[contrast]) + " contrast" + (precise ? " and precise mapping" : "") + "; defaulting to " + str(default_dt.specifier()));
return default_dt;
} else {
return current_dt;
}
}
void run () {
Tractography::Properties properties;
Tractography::Reader<float> file (argument[0], properties);
const size_t num_tracks = properties["count"].empty() ? 0 : to<size_t> (properties["count"]);
vector<default_type> voxel_size = get_option_value ("vox", vector<default_type>());
if (voxel_size.size() == 1) {
auto v = voxel_size.front();
voxel_size.assign (3, v);
} else if (!voxel_size.empty() && voxel_size.size() != 3)
throw Exception ("voxel size must either be a single isotropic value, or a list of 3 comma-separated voxel dimensions");
if (!voxel_size.empty())
INFO ("creating image with voxel dimensions [ " + str(voxel_size[0]) + " " + str(voxel_size[1]) + " " + str(voxel_size[2]) + " ]");
Header header;
auto opt = get_options ("template");
if (opt.size()) {
auto template_header = Header::open (opt[0][0]);
header = template_header;
header.keyval().clear();
header.keyval()["twi_template"] = str(opt[0][0]);
if (!voxel_size.empty())
oversample_header (header, voxel_size);
}
else {
if (voxel_size.empty())
throw Exception ("please specify a template image and/or the desired voxel size");
generate_header (header, argument[0], voxel_size);
}
if (header.ndim() > 3) {
header.ndim() = 3;
header.sanitise();
}
add_line (header.keyval()["comments"], "track-weighted image");
header.keyval()["tck_source"] = std::string (argument[0]);
opt = get_options ("contrast");
const contrast_t contrast = opt.size() ? contrast_t(int(opt[0][0])) : TDI;
opt = get_options ("stat_vox");
vox_stat_t stat_vox = opt.size() ? vox_stat_t(int(opt[0][0])) : V_SUM;
opt = get_options ("stat_tck");
tck_stat_t stat_tck = opt.size() ? tck_stat_t(int(opt[0][0])) : T_MEAN;
float gaussian_fwhm_tck = 0.0;
opt = get_options ("fwhm_tck");
if (opt.size()) {
if (stat_tck != GAUSSIAN) {
WARN ("Overriding per-track statistic to Gaussian as a full-width half-maximum has been provided.");
stat_tck = GAUSSIAN;
}
gaussian_fwhm_tck = opt[0][0];
} else if (stat_tck == GAUSSIAN) {
throw Exception ("If using Gaussian per-streamline statistic, need to provide a full-width half-maximum for the Gaussian kernel using the -fwhm option");
}
bool backtrack = false;
if (get_options ("backtrack").size()) {
if (stat_tck == ENDS_CORR || stat_tck == ENDS_MAX || stat_tck == ENDS_MEAN || stat_tck == ENDS_MIN || stat_tck == ENDS_PROD)
backtrack = true;
else
WARN ("-backtrack option ignored; only applicable to endpoint-based track statistics");
}
// Determine the dimensionality of the output image
writer_dim writer_type = GREYSCALE;
opt = get_options ("dec");
if (opt.size()) {
writer_type = DEC;
header.ndim() = 4;
header.size (3) = 3;
header.sanitise();
Stride::set (header, Stride::contiguous_along_axis (3, header));
}
std::unique_ptr<Directions::FastLookupSet> dirs;
opt = get_options ("dixel");
if (opt.size()) {
if (writer_type != GREYSCALE)
throw Exception ("Options for setting output image dimensionality are mutually exclusive");
writer_type = DIXEL;
if (Path::exists (opt[0][0]))
dirs.reset (new Directions::FastLookupSet (str(opt[0][0])));
else
dirs.reset (new Directions::FastLookupSet (to<size_t>(opt[0][0])));
header.ndim() = 4;
header.size(3) = dirs->size();
header.sanitise();
Stride::set (header, Stride::contiguous_along_axis (3, header));
// Write directions to image header as diffusion encoding
Eigen::MatrixXd grad (dirs->size(), 4);
for (size_t row = 0; row != dirs->size(); ++row) {
grad (row, 0) = ((*dirs)[row])[0];
grad (row, 1) = ((*dirs)[row])[1];
grad (row, 2) = ((*dirs)[row])[2];
grad (row, 3) = 1.0f;
}
set_DW_scheme (header, grad);
}
opt = get_options ("tod");
if (opt.size()) {
if (writer_type != GREYSCALE)
throw Exception ("Options for setting output image dimensionality are mutually exclusive");
writer_type = TOD;
const size_t lmax = opt[0][0];
if (lmax % 2)
throw Exception ("lmax for TODI must be an even number");
header.ndim() = 4;
header.size(3) = Math::SH::NforL (lmax);
header.sanitise();
Stride::set (header, Stride::contiguous_along_axis (3, header));
}
header.keyval()["twi_dimensionality"] = writer_dims[writer_type];
// Deal with erroneous statistics & provide appropriate messages
switch (contrast) {
case TDI:
if (stat_vox != V_SUM && stat_vox != V_MEAN) {
WARN ("Cannot use voxel statistic other than 'sum' or 'mean' for TDI generation - ignoring");
stat_vox = V_SUM;
}
if (stat_tck != T_MEAN)
WARN ("Cannot use track statistic other than default for TDI generation - ignoring");
stat_tck = T_MEAN;
break;
case LENGTH:
if (stat_tck != T_MEAN)
WARN ("Cannot use track statistic other than default for length-weighted TDI generation - ignoring");
stat_tck = T_MEAN;
break;
case INVLENGTH:
if (stat_tck != T_MEAN)
WARN ("Cannot use track statistic other than default for inverse-length-weighted TDI generation - ignoring");
stat_tck = T_MEAN;
break;
case SCALAR_MAP:
case SCALAR_MAP_COUNT:
case FOD_AMP:
case CURVATURE:
break;
case VECTOR_FILE:
if (stat_tck != T_MEAN)
WARN ("Cannot use track statistic other than default when providing contrast from an external data file - ignoring");
stat_tck = T_MEAN;
break;
default:
throw Exception ("Undefined contrast mechanism");
}
header.keyval()["twi_contrast"] = contrasts[contrast];
header.keyval()["twi_vox_stat"] = voxel_statistics[stat_vox];
header.keyval()["twi_tck_stat"] = track_statistics[stat_tck];
if (backtrack)
header.keyval()["twi_backtrack"] = "1";
// Figure out how the streamlines will be mapped
const bool precise = get_options ("precise").size();
header.keyval()["precise_mapping"] = precise ? "1" : "0";
const bool ends_only = get_options ("ends_only").size();
if (ends_only) {
if (precise)
throw Exception ("Options -precise and -ends_only are mutually exclusive");
header.keyval()["endpoints_only"] = "1";
}
size_t upsample_ratio = 1;
opt = get_options ("upsample");
if (opt.size()) {
if (ends_only) {
WARN ("cannot use upsampling if only streamline endpoints are to be mapped");
} else {
upsample_ratio = opt[0][0];
INFO ("track upsampling ratio manually set to " + str(upsample_ratio));
}
} else if (!ends_only) {
// If accurately calculating the length through each voxel traversed, need a higher upsampling ratio
// (1/10th of the voxel size was found to give a good quantification of chordal length)
// For all other applications, making the upsampled step size about 1/3rd of a voxel seems sufficient
try {
upsample_ratio = determine_upsample_ratio (header, properties, (precise ? 0.1 : 0.333));
INFO ("track upsampling ratio automatically set to " + str(upsample_ratio));
} catch (Exception& e) {
e.push_back ("Try using -upsample option to explicitly set the streamline upsampling ratio;");
e.push_back ("generally recommend a value of around (3 x step_size / voxel_size)");
throw e;
}
}
// Get header datatype based on user input, or select an appropriate datatype automatically
header.datatype() = DataType::Undefined;
if (writer_type == DEC)
header.datatype() = DataType::Float32;
opt = get_options ("datatype");
if (opt.size()) {
if (writer_type == DEC || writer_type == TOD) {
WARN ("Can't manually set datatype for " + str(Mapping::writer_dims[writer_type]) + " processing - overriding to Float32");
} else {
header.datatype() = DataType::parse (opt[0][0]);
}
}
const bool have_weights = get_options ("tck_weights_in").size();
if (have_weights && header.datatype().is_integer()) {
WARN ("Can't use an integer type if streamline weights are provided; overriding to Float32");
header.datatype() = DataType::Float32;
}
DataType default_datatype = DataType::Float32;
if ((writer_type == GREYSCALE || writer_type == DIXEL) && !have_weights && ((!precise && contrast == TDI) || contrast == SCALAR_MAP_COUNT))
default_datatype = DataType::UInt32;
header.datatype() = determine_datatype (header.datatype(), contrast, default_datatype, precise);
header.datatype().set_byte_order_native();
// Whether or not to still ,ap streamlines even if the factor is zero
// (can still affect output image if voxel-wise statistic is mean)
const bool map_zero = get_options ("map_zero").size();
if (map_zero)
header.keyval()["map_zero"] = "1";
// Produce a useful INFO message
std::string msg = std::string("Generating ") + Mapping::writer_dims[writer_type] + " image with ";
switch (contrast) {
case TDI: msg += "density"; break;
case LENGTH: msg += "length"; break;
case INVLENGTH: msg += "inverse length"; break;
case SCALAR_MAP: msg += "scalar map"; break;
case SCALAR_MAP_COUNT: msg += "scalar-map-thresholded tdi"; break;
case FOD_AMP: msg += "FOD amplitude"; break;
case CURVATURE: msg += "curvature"; break;
case VECTOR_FILE: msg += "external-file-based"; break;
default: msg += "ERROR"; break;
}
msg += " contrast";
if (contrast == SCALAR_MAP || contrast == SCALAR_MAP_COUNT || contrast == FOD_AMP || contrast == CURVATURE)
msg += ", ";
else
msg += " and ";
switch (stat_vox) {
case V_SUM: msg += "summed"; break;
case V_MIN: msg += "minimum"; break;
case V_MEAN: msg += "mean"; break;
case V_MAX: msg += "maximum"; break;
default: msg += "ERROR"; break;
}
msg += " per-voxel statistic";
if (contrast == SCALAR_MAP || contrast == SCALAR_MAP_COUNT || contrast == FOD_AMP || contrast == CURVATURE) {
msg += " and ";
switch (stat_tck) {
case T_SUM: msg += "summed"; break;
case T_MIN: msg += "minimum"; break;
case T_MEAN: msg += "mean"; break;
case T_MAX: msg += "maximum"; break;
case T_MEDIAN: msg += "median"; break;
case T_MEAN_NONZERO: msg += "mean (nonzero)"; break;
case GAUSSIAN: msg += "gaussian (FWHM " + str (gaussian_fwhm_tck) + "mm)"; break;
case ENDS_MIN: msg += "endpoints (minimum)"; break;
case ENDS_MEAN: msg += "endpoints (mean)"; break;
case ENDS_MAX: msg += "endpoints (maximum)"; break;
case ENDS_PROD: msg += "endpoints (product)"; break;
default: throw Exception ("Invalid track-wise statistic detected");
}
msg += " per-track statistic";
}
INFO (msg);
// Start initialising members for multi-threaded calculation
TrackLoader loader (file, num_tracks);
std::unique_ptr<TrackMapperTWI> mapper ((stat_tck == GAUSSIAN) ? (new Gaussian::TrackMapper (header, contrast)) : (new TrackMapperTWI (header, contrast, stat_tck)));
mapper->set_upsample_ratio (upsample_ratio);
mapper->set_map_zero (map_zero);
mapper->set_use_precise_mapping (precise);
mapper->set_map_ends_only (ends_only);
if (writer_type == DIXEL)
mapper->create_dixel_plugin (*dirs);
if (writer_type == TOD)
mapper->create_tod_plugin (header.size(3));
if (contrast == SCALAR_MAP || contrast == SCALAR_MAP_COUNT || contrast == FOD_AMP) {
opt = get_options ("image");
if (!opt.size()) {
if (contrast == SCALAR_MAP || contrast == SCALAR_MAP_COUNT)
throw Exception ("If using 'scalar_map' or 'scalar_map_count' contrast, must provide the relevant scalar image using -image option");
else
throw Exception ("If using 'fod_amp' contrast, must provide the relevant spherical harmonic image using -image option");
}
const std::string assoc_image (opt[0][0]);
if (contrast == SCALAR_MAP || contrast == SCALAR_MAP_COUNT) {
mapper->add_scalar_image (assoc_image);
if (backtrack)
mapper->set_backtrack();
} else {
mapper->add_fod_image (assoc_image);
}
header.keyval()["twi_assoc_image"] = Path::basename (assoc_image);
} else if (contrast == VECTOR_FILE) {
opt = get_options ("vector_file");
if (!opt.size())
throw Exception ("If using 'vector_file' contrast, must provide the relevant data file using the -vector_file option");
const std::string path (opt[0][0]);
mapper->add_vector_data (path);
header.keyval()["twi_vector_file"] = Path::basename (path);
}
std::unique_ptr<MapWriterBase> writer;
switch (writer_type) {
case UNDEFINED: throw Exception ("Invalid TWI writer image dimensionality");
case GREYSCALE: writer.reset (make_writer (header, argument[1], stat_vox, GREYSCALE)); break;
case DEC: writer.reset (new MapWriter<float> (header, argument[1], stat_vox, DEC)); break;
case DIXEL: writer.reset (make_writer (header, argument[1], stat_vox, DIXEL)); break;
case TOD: writer.reset (new MapWriter<float> (header, argument[1], stat_vox, TOD)); break;
}
// Finally get to do some number crunching!
// Complete branch here for Gaussian track-wise statistic; it's a nightmare to manage, so am
// keeping the code as separate as possible
if (stat_tck == GAUSSIAN) {
Gaussian::TrackMapper* const mapper_ptr = dynamic_cast<Gaussian::TrackMapper*>(mapper.get());
mapper_ptr->set_gaussian_FWHM (gaussian_fwhm_tck);
switch (writer_type) {
case UNDEFINED: throw Exception ("Invalid TWI writer image dimensionality");
case GREYSCALE: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper_ptr), Thread::batch (Gaussian::SetVoxel()), *writer); break;
case DEC: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper_ptr), Thread::batch (Gaussian::SetVoxelDEC()), *writer); break;
case DIXEL: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper_ptr), Thread::batch (Gaussian::SetDixel()), *writer); break;
case TOD: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper_ptr), Thread::batch (Gaussian::SetVoxelTOD()), *writer); break;
}
} else {
switch (writer_type) {
case UNDEFINED: throw Exception ("Invalid TWI writer image dimensionality");
case GREYSCALE: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper), Thread::batch (SetVoxel()), *writer); break;
case DEC: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper), Thread::batch (SetVoxelDEC()), *writer); break;
case DIXEL: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper), Thread::batch (SetDixel()), *writer); break;
case TOD: Thread::run_queue (loader, Thread::batch (Tractography::Streamline<float>()), Thread::multi (*mapper), Thread::batch (SetVoxelTOD()), *writer); break;
}
}
writer->finalise();
}
|