1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "exception.h"
#include "image.h"
#include "header.h"
#include "file/path.h"
#include "dwi/directions/set.h"
#include "dwi/tractography/mapping/fixel_td_map.h"
#include "dwi/tractography/SIFT/proc_mask.h"
#include "dwi/tractography/SIFT/sift.h"
#include "dwi/tractography/SIFT2/tckfactor.h"
using namespace MR;
using namespace App;
using namespace MR::DWI;
using namespace MR::DWI::Tractography;
using namespace MR::DWI::Tractography::SIFT2;
const OptionGroup SIFT2RegularisationOption = OptionGroup ("Regularisation options for SIFT2")
+ Option ("reg_tikhonov", "provide coefficient for regularising streamline weighting coefficients (Tikhonov regularisation) (default: " + str(SIFT2_REGULARISATION_TIKHONOV_DEFAULT, 2) + ")")
+ Argument ("value").type_float (0.0)
+ Option ("reg_tv", "provide coefficient for regularising variance of streamline weighting coefficient to fixels along its length (Total Variation regularisation) (default: " + str(SIFT2_REGULARISATION_TV_DEFAULT, 2) + ")")
+ Argument ("value").type_float (0.0);
const OptionGroup SIFT2AlgorithmOption = OptionGroup ("Options for controlling the SIFT2 optimisation algorithm")
+ Option ("min_td_frac", "minimum fraction of the FOD integral reconstructed by streamlines; "
"if the reconstructed streamline density is below this fraction, the fixel is excluded from optimisation "
"(default: " + str(SIFT2_MIN_TD_FRAC_DEFAULT, 2) + ")")
+ Argument ("fraction").type_float (0.0, 1.0)
+ Option ("min_iters", "minimum number of iterations to run before testing for convergence; "
"this can prevent premature termination at early iterations if the cost function increases slightly "
"(default: " + str(SIFT2_MIN_ITERS_DEFAULT) + ")")
+ Argument ("count").type_integer (0)
+ Option ("max_iters", "maximum number of iterations to run before terminating program")
+ Argument ("count").type_integer (0)
+ Option ("min_factor", "minimum weighting factor for an individual streamline; "
"if the factor falls below this number the streamline will be rejected entirely (factor set to zero) "
"(default: " + str(std::exp (SIFT2_MIN_COEFF_DEFAULT), 2) + ")")
+ Argument ("factor").type_float (0.0, 1.0)
+ Option ("min_coeff", "minimum weighting coefficient for an individual streamline; "
"similar to the '-min_factor' option, but using the exponential coefficient basis of the SIFT2 model; "
"these parameters are related as: factor = e^(coeff). "
"Note that the -min_factor and -min_coeff options are mutually exclusive - you can only provide one. "
"(default: " + str(SIFT2_MIN_COEFF_DEFAULT, 2) + ")")
+ Argument ("coeff").type_float (-std::numeric_limits<default_type>::infinity(), 0.0)
+ Option ("max_factor", "maximum weighting factor that can be assigned to any one streamline "
"(default: " + str(std::exp (SIFT2_MAX_COEFF_DEFAULT), 2) + ")")
+ Argument ("factor").type_float (1.0)
+ Option ("max_coeff", "maximum weighting coefficient for an individual streamline; "
"similar to the '-max_factor' option, but using the exponential coefficient basis of the SIFT2 model; "
"these parameters are related as: factor = e^(coeff). "
"Note that the -max_factor and -max_coeff options are mutually exclusive - you can only provide one. "
"(default: " + str(SIFT2_MAX_COEFF_DEFAULT, 2) + ")")
+ Argument ("coeff").type_float (1.0)
+ Option ("max_coeff_step", "maximum change to a streamline's weighting coefficient in a single iteration "
"(default: " + str(SIFT2_MAX_COEFF_STEP_DEFAULT, 2) + ")")
+ Argument ("step").type_float ()
+ Option ("min_cf_decrease", "minimum decrease in the cost function (as a fraction of the initial value) that must occur each iteration for the algorithm to continue "
"(default: " + str(SIFT2_MIN_CF_DECREASE_DEFAULT, 2) + ")")
+ Argument ("frac").type_float (0.0, 1.0)
+ Option ("linear", "perform a linear estimation of streamline weights, rather than the standard non-linear optimisation "
"(typically does not provide as accurate a model fit; but only requires a single pass)");
void usage ()
{
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Optimise per-streamline cross-section multipliers to match a whole-brain tractogram to fixel-wise fibre densities";
REFERENCES
+ "Smith, R. E.; Tournier, J.-D.; Calamante, F. & Connelly, A. " // Internal
"SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. "
"NeuroImage, 2015, 119, 338-351"
+ "* If using the -linear option: \n"
"Smith, RE; Raffelt, D; Tournier, J-D; Connelly, A. " // Internal
"Quantitative Streamlines Tractography: Methods and Inter-Subject Normalisation. "
"OHBM Aperture, 10.52294/ApertureNeuro.2022.2.NEOD9565.";
ARGUMENTS
+ Argument ("in_tracks", "the input track file").type_tracks_in()
+ Argument ("in_fod", "input image containing the spherical harmonics of the fibre orientation distributions").type_image_in()
+ Argument ("out_weights", "output text file containing the weighting factor for each streamline").type_file_out();
OPTIONS
+ SIFT::SIFTModelProcMaskOption
+ SIFT::SIFTModelOption
+ SIFT::SIFTOutputOption
+ Option ("out_coeffs", "output text file containing the weighting coefficient for each streamline")
+ Argument ("path").type_file_out()
+ SIFT2RegularisationOption
+ SIFT2AlgorithmOption;
}
void run ()
{
if (get_options("min_factor").size() && get_options("min_coeff").size())
throw Exception ("Options -min_factor and -min_coeff are mutually exclusive");
if (get_options("max_factor").size() && get_options("max_coeff").size())
throw Exception ("Options -max_factor and -max_coeff are mutually exclusive");
if (Path::has_suffix (argument[2], ".tck"))
throw Exception ("Output of tcksift2 command should be a text file, not a tracks file");
auto in_dwi = Image<float>::open (argument[1]);
DWI::Directions::FastLookupSet dirs (1281);
TckFactor tckfactor (in_dwi, dirs);
const bool output_debug = get_options ("output_debug").size();
if (output_debug)
tckfactor.output_proc_mask ("proc_mask.mif");
tckfactor.perform_FOD_segmentation (in_dwi);
tckfactor.scale_FDs_by_GM();
tckfactor.map_streamlines (argument[0]);
tckfactor.store_orig_TDs();
const float min_td_frac = get_option_value ("min_td_frac", SIFT2_MIN_TD_FRAC_DEFAULT);
tckfactor.remove_excluded_fixels (min_td_frac);
if (output_debug)
tckfactor.output_all_debug_images ("before");
if (get_options ("linear").size()) {
tckfactor.calc_afcsa();
} else {
auto opt = get_options ("csv");
if (opt.size())
tckfactor.set_csv_path (opt[0][0]);
const float reg_tikhonov = get_option_value ("reg_tikhonov", SIFT2_REGULARISATION_TIKHONOV_DEFAULT);
const float reg_tv = get_option_value ("reg_tv", SIFT2_REGULARISATION_TV_DEFAULT);
tckfactor.set_reg_lambdas (reg_tikhonov, reg_tv);
opt = get_options ("min_iters");
if (opt.size())
tckfactor.set_min_iters (int(opt[0][0]));
opt = get_options ("max_iters");
if (opt.size())
tckfactor.set_max_iters (int(opt[0][0]));
opt = get_options ("min_factor");
if (opt.size())
tckfactor.set_min_factor (float(opt[0][0]));
opt = get_options ("min_coeff");
if (opt.size())
tckfactor.set_min_coeff (float(opt[0][0]));
opt = get_options ("max_factor");
if (opt.size())
tckfactor.set_max_factor (float(opt[0][0]));
opt = get_options ("max_coeff");
if (opt.size())
tckfactor.set_max_coeff (float(opt[0][0]));
opt = get_options ("max_coeff_step");
if (opt.size())
tckfactor.set_max_coeff_step (float(opt[0][0]));
opt = get_options ("min_cf_decrease");
if (opt.size())
tckfactor.set_min_cf_decrease (float(opt[0][0]));
tckfactor.estimate_factors();
}
tckfactor.output_factors (argument[2]);
auto opt = get_options ("out_coeffs");
if (opt.size())
tckfactor.output_coefficients (opt[0][0]);
if (output_debug)
tckfactor.output_all_debug_images ("after");
opt = get_options ("out_mu");
if (opt.size()) {
File::OFStream out_mu (opt[0][0]);
out_mu << tckfactor.mu();
}
}
|