1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/* Copyright (c) 2008-2025 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Covered Software is provided under this License on an "as is"
* basis, without warranty of any kind, either expressed, implied, or
* statutory, including, without limitation, warranties that the
* Covered Software is free of defects, merchantable, fit for a
* particular purpose or non-infringing.
* See the Mozilla Public License v. 2.0 for more details.
*
* For more details, see http://www.mrtrix.org/.
*/
#include "command.h"
#include "progressbar.h"
#include "types.h"
#include "file/path.h"
#include "math/stats/fwe.h"
#include "math/stats/glm.h"
#include "math/stats/import.h"
#include "math/stats/shuffle.h"
#include "math/stats/typedefs.h"
#include "stats/permtest.h"
using namespace MR;
using namespace App;
using namespace MR::Math::Stats;
using namespace MR::Math::Stats::GLM;
void usage ()
{
AUTHOR = "Robert E. Smith (robert.smith@florey.edu.au)";
SYNOPSIS = "Statistical testing of vector data using non-parametric permutation testing";
DESCRIPTION
+ "This command can be used to perform permutation testing of any form of data. "
"The data for each input subject must be stored in a text file, with one value per row. "
"The data for each row across subjects will be tested independently, i.e. there is no "
"statistical enhancement that occurs between the data; however family-wise error control "
"will be used."
+ Math::Stats::GLM::column_ones_description;
ARGUMENTS
+ Argument ("input", "a text file listing the file names of the input subject data").type_file_in ()
+ Argument ("design", "the design matrix").type_file_in ()
+ Argument ("contrast", "the contrast matrix").type_file_in ()
+ Argument ("output", "the filename prefix for all output").type_text();
OPTIONS
+ Math::Stats::shuffle_options (false)
+ Math::Stats::GLM::glm_options ("element");
}
using Math::Stats::matrix_type;
using Math::Stats::vector_type;
using Stats::PermTest::count_matrix_type;
// Define data importer class that willl obtain data for a
// specific subject based on the string path to the data file for
// that subject
//
// This is far more simple than the equivalent functionality in other
// MRtrix3 statistical inference commands, since the data are
// already in a vectorised form.
class SubjectVectorImport : public SubjectDataImportBase
{ MEMALIGN(SubjectVectorImport)
public:
SubjectVectorImport (const std::string& path) :
SubjectDataImportBase (path),
data (load_vector (path)) { }
void operator() (matrix_type::RowXpr row) const override
{
assert (size_t(row.size()) == size());
row = data;
}
default_type operator[] (const size_t index) const override
{
assert (index < size());
return data[index];
}
size_t size() const override { return data.size(); }
private:
const vector_type data;
};
void run()
{
CohortDataImport importer;
importer.initialise<SubjectVectorImport> (argument[0]);
const size_t num_inputs = importer.size();
CONSOLE ("Number of subjects: " + str(num_inputs));
const size_t num_elements = importer[0]->size();
CONSOLE ("Number of elements: " + str(num_elements));
for (size_t i = 0; i != importer.size(); ++i) {
if (importer[i]->size() != num_elements)
throw Exception ("Subject file \"" + importer[i]->name() + "\" contains incorrect number of elements (" + str(importer[i]) + "; expected " + str(num_elements) + ")");
}
// Load design matrix
const matrix_type design = load_matrix (argument[1]);
if (size_t(design.rows()) != num_inputs)
throw Exception ("Number of subjects (" + str(num_inputs) + ") does not match number of rows in design matrix (" + str(design.rows()) + ")");
// Before validating the contrast matrix, we first need to see if there are any
// additional design matrix columns coming from element-wise subject data
vector<CohortDataImport> extra_columns;
bool nans_in_columns = false;
auto opt = get_options ("column");
for (size_t i = 0; i != opt.size(); ++i) {
extra_columns.push_back (CohortDataImport());
extra_columns[i].initialise<SubjectVectorImport> (opt[i][0]);
if (!extra_columns[i].allFinite())
nans_in_columns = true;
}
const ssize_t num_factors = design.cols() + extra_columns.size();
CONSOLE ("Number of factors: " + str(num_factors));
if (extra_columns.size()) {
CONSOLE ("Number of element-wise design matrix columns: " + str(extra_columns.size()));
if (nans_in_columns)
CONSOLE ("Non-finite values detected in element-wise design matrix columns; individual rows will be removed from voxel-wise design matrices accordingly");
}
check_design (design, extra_columns.size());
// Load variance groups
auto variance_groups = GLM::load_variance_groups (num_inputs);
const size_t num_vgs = variance_groups.size() ? variance_groups.maxCoeff()+1 : 1;
if (num_vgs > 1)
CONSOLE ("Number of variance groups: " + str(num_vgs));
// Load hypotheses
const vector<Hypothesis> hypotheses = Math::Stats::GLM::load_hypotheses (argument[2]);
const size_t num_hypotheses = hypotheses.size();
if (hypotheses[0].cols() != num_factors)
throw Exception ("The number of columns in the contrast matrix (" + str(hypotheses[0].cols()) + ")"
+ " does not equal the number of columns in the design matrix (" + str(design.cols()) + ")"
+ (extra_columns.size() ? " (taking into account the " + str(extra_columns.size()) + " uses of -column)" : ""));
CONSOLE ("Number of hypotheses: " + str(num_hypotheses));
const std::string output_prefix = argument[3];
// Load input data
matrix_type data (num_inputs, num_elements);
for (size_t subject = 0; subject != num_inputs; subject++)
(*importer[subject]) (data.row(subject));
const bool nans_in_data = !data.allFinite();
if (nans_in_data) {
INFO ("Non-finite values present in data; rows will be removed from element-wise design matrices accordingly");
if (!extra_columns.size()) {
INFO ("(Note that this will result in slower execution than if such values were not present)");
}
}
// Only add contrast matrix row number to image outputs if there's more than one hypothesis
auto postfix = [&] (const size_t i) { return (num_hypotheses > 1) ? ("_" + hypotheses[i].name()) : ""; };
{
matrix_type betas (num_factors, num_elements);
matrix_type abs_effect_size (num_elements, num_hypotheses);
matrix_type std_effect_size (num_elements, num_hypotheses);
matrix_type stdev (num_vgs, num_elements);
vector_type cond (num_elements);
Math::Stats::GLM::all_stats (data, design, extra_columns, hypotheses, variance_groups,
cond, betas, abs_effect_size, std_effect_size, stdev);
ProgressBar progress ("Outputting beta coefficients, effect size and standard deviation", 2 + (2 * num_hypotheses) + (nans_in_data || extra_columns.size() ? 1 : 0));
save_matrix (betas, output_prefix + "betas.csv");
++progress;
for (size_t i = 0; i != num_hypotheses; ++i) {
if (!hypotheses[i].is_F()) {
save_vector (abs_effect_size.col(i), output_prefix + "abs_effect" + postfix(i) + ".csv");
++progress;
if (num_vgs == 1)
save_vector (std_effect_size.col(i), output_prefix + "std_effect" + postfix(i) + ".csv");
} else {
++progress;
}
++progress;
}
if (nans_in_data || extra_columns.size()) {
save_vector (cond, output_prefix + "cond.csv");
++progress;
}
if (num_vgs == 1)
save_vector (stdev.row(0), output_prefix + "std_dev.csv");
else
save_matrix (stdev, output_prefix + "std_dev.csv");
}
// Construct the class for performing the initial statistical tests
std::shared_ptr<GLM::TestBase> glm_test;
if (extra_columns.size() || nans_in_data) {
if (variance_groups.size())
glm_test.reset (new GLM::TestVariableHeteroscedastic (extra_columns, data, design, hypotheses, variance_groups, nans_in_data, nans_in_columns));
else
glm_test.reset (new GLM::TestVariableHomoscedastic (extra_columns, data, design, hypotheses, nans_in_data, nans_in_columns));
} else {
if (variance_groups.size())
glm_test.reset (new GLM::TestFixedHeteroscedastic (data, design, hypotheses, variance_groups));
else
glm_test.reset (new GLM::TestFixedHomoscedastic (data, design, hypotheses));
}
// Precompute default statistic
// Don't use convenience function: No enhancer!
// Manually construct default shuffling matrix
// TODO Change to use convenience function; we make an empty enhancer later anyway
const matrix_type default_shuffle (matrix_type::Identity (num_inputs, num_inputs));
matrix_type default_statistic, default_zstat;
(*glm_test) (default_shuffle, default_statistic, default_zstat);
for (size_t i = 0; i != num_hypotheses; ++i) {
save_matrix (default_statistic.col(i), output_prefix + (hypotheses[i].is_F() ? "F" : "t") + "value" + postfix(i) + ".csv");
save_matrix (default_zstat.col(i), output_prefix + "Zstat" + postfix(i) + ".csv");
}
// Perform permutation testing
if (!get_options ("notest").size()) {
const bool fwe_strong = get_options ("strong").size();
if (fwe_strong && num_hypotheses == 1) {
WARN("Option -strong has no effect when testing a single hypothesis only");
}
std::shared_ptr<Stats::EnhancerBase> enhancer;
matrix_type null_distribution, uncorrected_pvalues;
count_matrix_type null_contributions;
matrix_type empirical_distribution; // unused
Stats::PermTest::run_permutations (glm_test, enhancer, empirical_distribution, default_zstat, fwe_strong,
null_distribution, null_contributions, uncorrected_pvalues);
if (fwe_strong) {
save_vector (null_distribution.col(0), output_prefix + "null_dist.csv");
} else {
for (size_t i = 0; i != num_hypotheses; ++i)
save_vector (null_distribution.col(i), output_prefix + "null_dist" + postfix(i) + ".csv");
}
const matrix_type fwe_pvalues = MR::Math::Stats::fwe_pvalue (null_distribution, default_zstat);
for (size_t i = 0; i != num_hypotheses; ++i) {
save_vector (fwe_pvalues.col(i), output_prefix + "fwe_1mpvalue" + postfix(i) + ".csv");
save_vector (uncorrected_pvalues.col(i), output_prefix + "uncorrected_pvalue" + postfix(i) + ".csv");
save_vector (null_contributions.col(i), output_prefix + "null_contributions" + postfix(i) + ".csv");
}
}
}
|