1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
.. _references:
References
==========
.. [Christiaens2015] D. Christiaens, M. Reisert, T. Dhollander, S. Sunaert, P. Suetens, and F. Maes.
*Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model.*
NeuroImage, 123 (2015), pp. 89–101.
[`full text link <http://www.sciencedirect.com/science/article/pii/S1053811915007168>`__\ ]
.. [CorderoGrande2019] L. Cordero-Grande, D. Christiaens, J. Hutter, A.N. Price, J.V. Hajnal
*Complex diffusion-weighted image estimation via matrix recovery under general noise models.*
NeuroImage 200 (2019), pp. 391-404
[`full text link <https://www.sciencedirect.com/science/article/pii/S1053811919305348>`__\ ]
.. [Dhollander2014] T. Dhollander, L. Emsell, W. Van Hecke, F. Maes, S. Sunaert, and P. Suetens.
*Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography.*
NeuroImage, 94 (2014), pp. 312–336.
[`full text link <http://www.sciencedirect.com/science/article/pii/S1053811913012676>`__\ ]
.. [Dhollander2016a] T. Dhollander, D. Raffelt, and A. Connelly.
*A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data.*
Proceedings of the 24th annual meeting of the International Society of Magnetic Resonance in Medicine (2016), pp. 3010.
[`full text link <https://www.researchgate.net/publication/301766619_A_novel_iterative_approach_to_reap_the_benefits_of_multi-tissue_CSD_from_just_single-shell_b0_diffusion_MRI_data>`__\ ]
.. [Dhollander2016b] T. Dhollander, D. Raffelt, and A. Connelly.
*Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image.*
ISMRM Workshop on Breaking the Barriers of Diffusion MRI (2016), pp. 5.
[`full text link <https://www.researchgate.net/publication/307863133_Unsupervised_3-tissue_response_function_estimation_from_single-shell_or_multi-shell_diffusion_MR_data_without_a_co-registered_T1_image>`__\ ]
.. [Dhollander2017] T. Dhollander, D. Raffelt, and A. Connelly.
*Towards interpretation of 3-tissue constrained spherical deconvolution results in pathology.*
Proceedings of the 25th annual meeting of the International Society of Magnetic Resonance in Medicine (2017), pp. 1815.
[`full text link <https://www.researchgate.net/publication/315836029_Towards_interpretation_of_3-tissue_constrained_spherical_deconvolution_results_in_pathology>`__\ ]
.. [Dhollander2018a] T. Dhollander, D. Raffelt, and A. Connelly.
*Accuracy of response function estimation algorithms for 3-tissue spherical deconvolution of diverse quality diffusion MRI data.*
Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 1569.
[`full text link <https://www.researchgate.net/publication/324770874_Accuracy_of_response_function_estimation_algorithms_for_3-tissue_spherical_deconvolution_of_diverse_quality_diffusion_MRI_data>`__\ ]
.. [Dhollander2018b] T. Dhollander, J. Zanin, B.A. Nayagam, G. Rance, and A. Connelly.
*Feasibility and benefits of 3-tissue constrained spherical deconvolution for studying the brains of babies.*
Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 3077.
[`full text link <https://www.researchgate.net/publication/324770875_Feasibility_and_benefits_of_3-tissue_constrained_spherical_deconvolution_for_studying_the_brains_of_babies>`__\ ]
.. [Dhollander2019] T. Dhollander, R. Mito, D. Raffelt, and A. Connelly.
*Improved white matter response function estimation for 3-tissue constrained spherical deconvolution.*
Proceedings of the 27th annual meeting of the International Society of Magnetic Resonance in Medicine (2019), pp. 555.
[`full text link <https://www.researchgate.net/publication/331165168_Improved_white_matter_response_function_estimation_for_3-tissue_constrained_spherical_deconvolution>`__\ ]
.. [Jeurissen2014] B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers.
*Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data.*
NeuroImage, 103 (2014), pp. 411–426.
[`full text link <http://www.sciencedirect.com/science/article/pii/S1053811914006442>`__\ ]
.. [Mito2018a] R. Mito, D. Raffelt, T. Dhollander, D.N. Vaughan, J.-D. Tournier, O. Salvado, A. Brodtmann, C.C. Rowe, V.L. Villemagne, and A. Connelly.
*Fibre-specific white matter reductions in Alzheimer's disease and mild cognitive impairment.*
Brain, 141(3) (2018), pp. 888–902.
[`full text link <http://dx.doi.org/10.1093/brain/awx355>`__\ ]
.. [Mito2018b] R. Mito, T. Dhollander, D. Raffelt, Y. Xia, O. Salvado, A. Brodtmann, C.C. Rowe, V.L. Villemagne, and A. Connelly.
*Investigating microstructural heterogeneity of white matter hyperintensities in Alzheimer’s disease using single-shell 3-tissue constrained spherical deconvolution.*
Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 135.
[`full text link <https://www.researchgate.net/publication/324771728_Investigating_microstructural_heterogeneity_of_white_matter_hyperintensities_in_Alzheimer's_disease_using_single-shell_3-tissue_constrained_spherical_deconvolution>`__\ ]
.. [Raffelt2011] D. Raffelt, J.-D. Tournier, J. Fripp, S Crozier, A. Connelly, O. Salvado.
*Symmetric diffeomorphic registration of fibre orientation distributions.*
NeuroImage 56 (2011), pp. 1171–1180.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/21316463>`__\ ]
.. [Raffelt2012] D. Raffelt, J.-D. Tournier, S. Rose, G.R. Ridgway, R. Henderson, S. Crozier, O. Salvado, A. Connelly.
*Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images.*
NeuroImage 59 (2012), pp. 3976–3994.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/22036682>`__\ ]
.. [Raffelt2015] D.A. Raffelt, R.E. Smith, G.R. Ridgway, J.-D. Tournier, D.N. Vaughan, S. Rose, R. Henderson, A. Connelly.
*Connectivity-Based Fixel Enhancement: Whole-Brain Statistical Analysis of Diffusion MRI Measures in the Presence of Crossing Fibres.*
NeuroImage 117 (2015), pp. 40–55.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/26004503>`__\ ]
.. [Raffelt2017] D.A. Raffelt, J.-D. Tournier, R.E. Smith, D.N. Vaughan, G. Jackson, G.R. Ridgway, A. Connelly.
*Investigating White Matter Fibre Density and Morphology using Fixel-Based Analysis.*
NeuroImage, 144 (2017), pp. 58-73.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/27639350>`__\ ]
.. [Reisert2011] M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, and V. Kiselev.
*Global fiber reconstruction becomes practical.*
NeuroImage, 54 (2011) pp. 955–962.
[`full text link <http://www.sciencedirect.com/science/article/pii/S1053811910011973>`__\ ]
.. [Smith2012] R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly.
*Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information.*
NeuroImage 62 (2012), pp. 1924–1938.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/22705374>`__\ ]
.. [Smith2013] R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly.
*SIFT: Spherical-deconvolution informed filtering of tractograms.*
NeuroImage 67 (2013), pp. 298–312.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/23238430>`__\ ]
.. [Smith2015] R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly.
*SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography.*
NeuroImage 119 (2015), pp. 338-51.
[`full text link <https://www.ncbi.nlm.nih.gov/pubmed/26163802>`__\ ]
.. [Smith2019a] R.E. Smith, D. Dimond, S. Bray, A. Connelly.
*Mitigation of DWI brain cropping in Fixel-Based Analysis.*
In Proc OHBM (2019), W765
[`full text link <https://www.researchgate.net/publication/332495497_Mitigation_of_DWI_brain_cropping_in_Fixel-Based_Analysis>`__\ ]
.. [Tax2014] C.M.W. Tax, B. Jeurissen, S.B.Vos, M.A. Viergever, and A. Leemans.
*Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data.*
NeuroImage, 86 (2014), pp. 67–80.
[`full text link <https://www.sciencedirect.com/science/article/pii/S1053811913008367>`__\ ]
.. [Tournier2004] J.-D. Tournier, F. Calamante, D.G. Gadian, and A. Connelly.
*Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution.*
NeuroImage, 23 (2004), pp. 1176–85.
[`full text link <https://www.sciencedirect.com/science/article/pii/S1053811904004100>`__\ ]
.. [Tournier2007] J.-D. Tournier, F. Calamante, and A. Connelly.
*Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.*
Neuroimage, 35 (2007), pp. 1459–72.
[`full text link <https://www.sciencedirect.com/science/article/pii/S1053811907001243>`__\ ]
.. [Tournier2012] J.-D. Tournier, F. Calamante, A. Connelly.
*MRtrix: Diffusion tractography in crossing fiber regions.*
INT J IMAG SYST TECH, 22 (2012), pp. 53-66.
[`full text link <http://onlinelibrary.wiley.com/doi/10.1002/ima.22005/abstract>`__\ ]
.. [Tournier2013] J.-D. Tournier, F. Calamante, and A. Connelly.
*Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging.*
NMR Biomed., 26 (2013), pp. 1775–86.
[`full text link <https://onlinelibrary.wiley.com/doi/abs/10.1002/nbm.3017>`__\ ]
.. [Tournier2019] J.-D. Tournier, R. E. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H. Yeh, and A. Connelly.
*MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.*
NeuroImage, 202 (2019), pp. 116–37.
[`fulltext link <https://www.sciencedirect.com/science/article/pii/S1053811919307281>`__\ ]
.. [Veraart2016a] J. Veraart, E. Fieremans, and D.S. Novikov.
*Diffusion MRI noise mapping using random matrix theory.*
Magn. Res. Med. 76(5) (2016), pp. 1582–1593.
[`full text link <https://doi.org/10.1002/mrm.26059>`__\ ]
.. [Veraart2016b] J. Veraart, D.S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans
*Denoising of diffusion MRI using random matrix theory.*
NeuroImage 142 (2016), pp. 394–406.
[`full text link <http://dx.doi.org/10.1016/j.neuroimage.2016.08.016>`__\ ]
|