1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* Copyright (c) 2008-2018 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/
*
* MRtrix3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* For more details, see http://www.mrtrix.org/
*/
#include "command.h"
#include "image.h"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#define DEFAULT_SIZE 5
using namespace MR;
using namespace App;
void usage ()
{
SYNOPSIS = "Denoise DWI data and estimate the noise level based on the optimal threshold for PCA";
DESCRIPTION
+ "DWI data denoising and noise map estimation by exploiting data redundancy in the PCA domain "
"using the prior knowledge that the eigenspectrum of random covariance matrices is described by "
"the universal Marchenko Pastur distribution."
+ "Important note: image denoising must be performed as the first step of the image processing pipeline. "
"The routine will fail if interpolation or smoothing has been applied to the data prior to denoising."
+ "Note that this function does not correct for non-Gaussian noise biases.";
AUTHOR = "Daan Christiaens (daan.christiaens@kcl.ac.uk) & Jelle Veraart (jelle.veraart@nyumc.org) & J-Donald Tournier (jdtournier@gmail.com)";
REFERENCES
+ "Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-aron, B.; Sijbers, J. & Fieremans, E. " // Internal
"Denoising of diffusion MRI using random matrix theory. "
"NeuroImage, 2016, 142, 394-406, doi: 10.1016/j.neuroimage.2016.08.016"
+ "Veraart, J.; Fieremans, E. & Novikov, D.S. " // Internal
"Diffusion MRI noise mapping using random matrix theory. "
"Magn. Res. Med., 2016, 76(5), 1582-1593, doi: 10.1002/mrm.26059";
ARGUMENTS
+ Argument ("dwi", "the input diffusion-weighted image.").type_image_in ()
+ Argument ("out", "the output denoised DWI image.").type_image_out ();
OPTIONS
+ Option ("mask", "only perform computation within the specified binary brain mask image.")
+ Argument ("image").type_image_in()
+ Option ("extent", "set the window size of the denoising filter. (default = " + str(DEFAULT_SIZE) + "," + str(DEFAULT_SIZE) + "," + str(DEFAULT_SIZE) + ")")
+ Argument ("window").type_sequence_int ()
+ Option ("noise", "the output noise map.")
+ Argument ("level").type_image_out();
COPYRIGHT = "Copyright (c) 2016 New York University, University of Antwerp, and the MRtrix3 contributors \n \n"
"Permission is hereby granted, free of charge, to any non-commercial entity ('Recipient') obtaining a copy of this software and "
"associated documentation files (the 'Software'), to the Software solely for non-commercial research, including the rights to "
"use, copy and modify the Software, subject to the following conditions: \n \n"
"\t 1. The above copyright notice and this permission notice shall be included by Recipient in all copies or substantial portions of "
"the Software. \n \n"
"\t 2. THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES"
"OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE"
"LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR"
"IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. \n \n"
"\t 3. In no event shall NYU be liable for direct, indirect, special, incidental or consequential damages in connection with the Software. "
"Recipient will defend, indemnify and hold NYU harmless from any claims or liability resulting from the use of the Software by recipient. \n \n"
"\t 4. Neither anything contained herein nor the delivery of the Software to recipient shall be deemed to grant the Recipient any right or "
"licenses under any patents or patent application owned by NYU. \n \n"
"\t 5. The Software may only be used for non-commercial research and may not be used for clinical care. \n \n"
"\t 6. Any publication by Recipient of research involving the Software shall cite the references listed below.";
}
using value_type = float;
template <class ImageType>
class DenoisingFunctor { MEMALIGN(DenoisingFunctor)
public:
DenoisingFunctor (ImageType& dwi, vector<int> extent, Image<bool>& mask, ImageType& noise)
: extent {{extent[0]/2, extent[1]/2, extent[2]/2}},
m (dwi.size(3)),
n (extent[0]*extent[1]*extent[2]),
r ((m<n) ? m : n),
X (m,n),
pos {{0, 0, 0}},
mask (mask),
noise (noise)
{ }
void operator () (ImageType& dwi, ImageType& out)
{
if (mask.valid()) {
assign_pos_of (dwi).to (mask);
if (!mask.value())
return;
}
// Load data in local window
load_data (dwi);
// Compute Eigendecomposition:
Eigen::MatrixXf XtX (r,r);
if (m <= n)
XtX.template triangularView<Eigen::Lower>() = X * X.transpose();
else
XtX.template triangularView<Eigen::Lower>() = X.transpose() * X;
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXf> eig (XtX);
// eigenvalues provide squared singular values:
Eigen::VectorXf s = eig.eigenvalues();
// Marchenko-Pastur optimal threshold
const double lam_r = s[0] / n;
double clam = 0.0;
sigma2 = NaN;
ssize_t cutoff_p = 0;
for (ssize_t p = 0; p < r; ++p)
{
double lam = s[p] / n;
clam += lam;
double gam = double(m-r+p+1) / double(n);
double sigsq1 = clam / (p+1) / std::max (gam, 1.0);
double sigsq2 = (lam - lam_r) / 4 / std::sqrt(gam);
// sigsq2 > sigsq1 if signal else noise
if (sigsq2 < sigsq1) {
sigma2 = sigsq1;
cutoff_p = p+1;
}
}
if (cutoff_p > 0) {
// recombine data using only eigenvectors above threshold:
s.head (cutoff_p).setZero();
s.tail (r-cutoff_p).setOnes();
if (m <= n)
X.col (n/2) = eig.eigenvectors() * ( s.asDiagonal() * ( eig.eigenvectors().adjoint() * X.col(n/2) ));
else
X.col (n/2) = X * ( eig.eigenvectors() * ( s.asDiagonal() * eig.eigenvectors().adjoint().col(n/2) ));
}
// Store output
assign_pos_of(dwi).to(out);
for (auto l = Loop (3) (out); l; ++l)
out.value() = X(out.index(3), n/2);
// store noise map if requested:
if (noise.valid()) {
assign_pos_of(dwi).to(noise);
noise.value() = value_type (std::sqrt(sigma2));
}
}
void load_data (ImageType& dwi)
{
pos[0] = dwi.index(0); pos[1] = dwi.index(1); pos[2] = dwi.index(2);
X.setZero();
ssize_t k = 0;
for (dwi.index(2) = pos[2]-extent[2]; dwi.index(2) <= pos[2]+extent[2]; ++dwi.index(2))
for (dwi.index(1) = pos[1]-extent[1]; dwi.index(1) <= pos[1]+extent[1]; ++dwi.index(1))
for (dwi.index(0) = pos[0]-extent[0]; dwi.index(0) <= pos[0]+extent[0]; ++dwi.index(0), ++k)
if (! is_out_of_bounds(dwi,0,3))
X.col(k) = dwi.row(3);
// reset image position
dwi.index(0) = pos[0];
dwi.index(1) = pos[1];
dwi.index(2) = pos[2];
}
private:
const std::array<ssize_t, 3> extent;
const ssize_t m, n, r;
Eigen::MatrixXf X;
std::array<ssize_t, 3> pos;
double sigma2;
Image<bool> mask;
ImageType noise;
};
void run ()
{
auto dwi_in = Image<value_type>::open (argument[0]).with_direct_io(3);
if (dwi_in.ndim() != 4 || dwi_in.size(3) <= 1)
throw Exception ("input image must be 4-dimensional");
Image<bool> mask;
auto opt = get_options ("mask");
if (opt.size()) {
mask = Image<bool>::open (opt[0][0]);
check_dimensions (mask, dwi_in, 0, 3);
}
auto header = Header (dwi_in);
header.datatype() = DataType::Float32;
auto dwi_out = Image<value_type>::create (argument[1], header);
opt = get_options("extent");
vector<int> extent = { DEFAULT_SIZE, DEFAULT_SIZE, DEFAULT_SIZE };
if (opt.size()) {
extent = parse_ints(opt[0][0]);
if (extent.size() == 1)
extent = {extent[0], extent[0], extent[0]};
if (extent.size() != 3)
throw Exception ("-extent must be either a scalar or a list of length 3");
for (auto &e : extent)
if (!(e & 1))
throw Exception ("-extent must be a (list of) odd numbers");
}
Image<value_type> noise;
opt = get_options("noise");
if (opt.size()) {
header.ndim() = 3;
noise = Image<value_type>::create (opt[0][0], header);
}
DenoisingFunctor< Image<value_type> > func (dwi_in, extent, mask, noise);
ThreadedLoop ("running MP-PCA denoising", dwi_in, 0, 3)
.run (func, dwi_in, dwi_out);
}
|