1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/*
* Copyright (c) 2008-2018 the MRtrix3 contributors.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at http://mozilla.org/MPL/2.0/
*
* MRtrix3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* For more details, see http://www.mrtrix.org/
*/
#include "command.h"
#include "image.h"
#include "algo/threaded_loop.h"
#include "interp/linear.h"
using namespace MR;
using namespace App;
class TransformBase { MEMALIGN(TransformBase)
public:
virtual ~TransformBase(){}
virtual Eigen::Vector3 transform_point (const Eigen::Vector3& input) = 0;
};
class Warp : public TransformBase { MEMALIGN(Warp)
public:
Warp (Image<default_type>& in) : interp (in) {}
Eigen::Vector3 transform_point (const Eigen::Vector3 &input) {
Eigen::Vector3 output;
if (interp.scanner (input))
output = interp.row(3);
else
output.fill (NaN);
return output;
}
protected:
Interp::Linear<Image<default_type> > interp;
};
class Linear : public TransformBase { MEMALIGN(Linear)
public:
Linear (const transform_type& transform) : transform (transform) {}
Eigen::Vector3 transform_point (const Eigen::Vector3 &input) {
Eigen::Vector3 output = transform * input;
return output;
}
const transform_type transform;
};
void usage ()
{
AUTHOR = "David Raffelt (david.raffelt@florey.edu.au)";
SYNOPSIS = "Compose any number of linear transformations and/or warps into a single transformation";
DESCRIPTION
+ "The input linear transforms must be supplied in as a 4x4 matrix in a text file (as per the output of mrregister)."
"The input warp fields must be supplied as a 4D image representing a deformation field (as output from mrrregister -nl_warp).";
ARGUMENTS
+ Argument ("input", "the input transforms (either linear or non-linear warps). List transforms in the order you like them to be "
"applied to an image (as if you were applying them seperately with mrtransform).").type_file_in().allow_multiple()
+ Argument ("output", "the output file. If all input transformations are linear, then the output will also be a linear "
"transformation saved as a 4x4 matrix in a text file. If a template image is supplied, then the output will "
"always be a deformation field (see below). If all inputs are warps, or a mix of linear and warps, then the "
"output will be a deformation field defined on the grid of the last input warp supplied.").type_file_out ();
OPTIONS
+ Option ("template", "define the output grid defined by a template image")
+ Argument ("image").type_image_in();
}
using value_type = float;
void run ()
{
vector<std::unique_ptr<TransformBase>> transform_list;
std::unique_ptr<Header> template_header;
for (size_t i = 0; i < argument.size() - 1; ++i) {
try {
template_header.reset (new Header (Header::open (argument[i])));
auto image = Image<default_type>::open (argument[i]);
if (image.ndim() != 4)
throw Exception ("input warp is not a 4D image");
if (image.size(3) != 3)
throw Exception ("input warp should have 3 volumes in the 4th dimension");
std::unique_ptr<TransformBase> transform (new Warp (image));
transform_list.push_back (std::move (transform));
} catch (Exception& E) {
try {
std::unique_ptr<TransformBase> transform (new Linear (load_transform (argument[i])));
transform_list.push_back (std::move (transform));
} catch (Exception& E) {
throw Exception ("error reading input file: " + str(argument[i]) + ". Does not appear to be a 4D warp image or 4x4 linear transform.");
}
}
}
auto opt = get_options("template");
if (opt.size()) {
template_header.reset (new Header (Header::open (opt[0][0])));
// no template is supplied and there are input warps, then make sure the last transform in the list is a warp
} else if (template_header) {
if (!dynamic_cast<Warp*> (transform_list[transform_list.size() - 1].get()))
throw Exception ("Output deformation field grid not defined. When composing warps either use the -template "
"option to define the output deformation field grid, or ensure the last input transformation is a warp.");
}
// all inputs are linear so compose and output as text file
if (!template_header) {
transform_type composed = dynamic_cast<Linear*>(transform_list[transform_list.size() - 1].get())->transform;
ssize_t index = transform_list.size() - 2;
ProgressBar progress ("composing linear transformations", transform_list.size());
progress++;
while (index >= 0) {
composed = dynamic_cast<Linear*>(transform_list[index].get())->transform * composed;
index--;
progress++;
}
save_transform (composed, argument[argument.size() - 1]);
} else {
Header output_header (*template_header);
output_header.ndim() = 4;
output_header.size(3) = 3;
output_header.datatype() = DataType::Float32;
Image<float> output = Image<value_type>::create (argument [argument.size() - 1], output_header);
Transform template_transform (output);
for (auto i = Loop ("composing transformations", output, 0, 3) (output); i ; ++i) {
Eigen::Vector3 voxel ((default_type) output.index(0),
(default_type) output.index(1),
(default_type) output.index(2));
Eigen::Vector3 position = template_transform.voxel2scanner * voxel;
ssize_t index = transform_list.size() - 1;
while (index >= 0) {
position = transform_list[index]->transform_point (position);
index--;
}
output.row(3) = position;
}
}
}
|