File: transformcompose.cpp

package info (click to toggle)
mrtrix3 3.0~rc3%2Bgit135-g2b8e7d0c2-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,548 kB
  • sloc: cpp: 117,101; python: 6,472; sh: 638; makefile: 231; xml: 39; ansic: 20
file content (169 lines) | stat: -rw-r--r-- 6,032 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 * Copyright (c) 2008-2018 the MRtrix3 contributors.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, you can obtain one at http://mozilla.org/MPL/2.0/
 *
 * MRtrix3 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 *
 * For more details, see http://www.mrtrix.org/
 */


#include "command.h"
#include "image.h"
#include "algo/threaded_loop.h"
#include "interp/linear.h"

using namespace MR;
using namespace App;


class TransformBase { MEMALIGN(TransformBase)
  public:
    virtual ~TransformBase(){}
    virtual Eigen::Vector3 transform_point (const Eigen::Vector3& input) = 0;
};


class Warp : public TransformBase { MEMALIGN(Warp)
  public:
    Warp (Image<default_type>& in) : interp (in) {}

    Eigen::Vector3 transform_point (const Eigen::Vector3 &input) {
      Eigen::Vector3 output;
      if (interp.scanner (input))
        output = interp.row(3);
      else
        output.fill (NaN);
      return output;
    }

  protected:
    Interp::Linear<Image<default_type> > interp;
};


class Linear : public TransformBase { MEMALIGN(Linear)
  public:
    Linear (const transform_type& transform) : transform (transform) {}

    Eigen::Vector3 transform_point (const Eigen::Vector3 &input) {
       Eigen::Vector3 output = transform * input;
       return output;
    }

    const transform_type transform;
};


void usage ()
{
  AUTHOR = "David Raffelt (david.raffelt@florey.edu.au)";

  SYNOPSIS = "Compose any number of linear transformations and/or warps into a single transformation";

  DESCRIPTION
  + "The input linear transforms must be supplied in as a 4x4 matrix in a text file (as per the output of mrregister)."
    "The input warp fields must be supplied as a 4D image representing a deformation field (as output from mrrregister -nl_warp).";

  ARGUMENTS
  + Argument ("input", "the input transforms (either linear or non-linear warps). List transforms in the order you like them to be "
                       "applied to an image (as if you were applying them seperately with mrtransform).").type_file_in().allow_multiple()

  + Argument ("output", "the output file. If all input transformations are linear, then the output will also be a linear "
                        "transformation saved as a 4x4 matrix in a text file. If a template image is supplied, then the output will "
                        "always be a deformation field (see below). If all inputs are warps, or a mix of linear and warps, then the "
                        "output will be a deformation field defined on the grid of the last input warp supplied.").type_file_out ();

  OPTIONS
  + Option ("template", "define the output  grid defined by a template image")
  + Argument ("image").type_image_in();

}


using value_type = float;


void run ()
{
  vector<std::unique_ptr<TransformBase>> transform_list;
  std::unique_ptr<Header> template_header;

  for (size_t i = 0; i < argument.size() - 1; ++i) {
    try {
      template_header.reset (new Header (Header::open (argument[i])));
      auto image = Image<default_type>::open (argument[i]);

      if (image.ndim() != 4)
        throw Exception ("input warp is not a 4D image");

      if (image.size(3) != 3)
        throw Exception ("input warp should have 3 volumes in the 4th dimension");

      std::unique_ptr<TransformBase> transform (new Warp (image));
      transform_list.push_back (std::move (transform));

    } catch (Exception& E) {
      try {
        std::unique_ptr<TransformBase> transform (new Linear (load_transform (argument[i])));
        transform_list.push_back (std::move (transform));
      } catch (Exception& E) {
        throw Exception ("error reading input file: " + str(argument[i]) + ". Does not appear to be a 4D warp image or 4x4 linear transform.");
      }
    }

  }
  auto opt = get_options("template");

  if (opt.size()) {
    template_header.reset (new Header (Header::open (opt[0][0])));
  // no template is supplied and there are input warps, then make sure the last transform in the list is a warp
  } else if (template_header) {
    if (!dynamic_cast<Warp*> (transform_list[transform_list.size() - 1].get()))
      throw Exception ("Output deformation field grid not defined. When composing warps either use the -template "
                       "option to define the output deformation field grid, or ensure the last input transformation is a warp.");
  }

  // all inputs are linear so compose and output as text file
  if (!template_header) {

    transform_type composed = dynamic_cast<Linear*>(transform_list[transform_list.size() - 1].get())->transform;
    ssize_t index = transform_list.size() - 2;
    ProgressBar progress ("composing linear transformations", transform_list.size());
    progress++;
    while (index >= 0) {
      composed = dynamic_cast<Linear*>(transform_list[index].get())->transform * composed;
      index--;
      progress++;
    }
    save_transform (composed, argument[argument.size() - 1]);

  } else {
    Header output_header (*template_header);
    output_header.ndim() = 4;
    output_header.size(3) = 3;
    output_header.datatype() = DataType::Float32;

    Image<float> output = Image<value_type>::create (argument [argument.size() - 1], output_header);

    Transform template_transform (output);
    for (auto i = Loop ("composing transformations", output, 0, 3) (output); i ; ++i) {
      Eigen::Vector3 voxel ((default_type) output.index(0),
                            (default_type) output.index(1),
                            (default_type) output.index(2));

      Eigen::Vector3 position = template_transform.voxel2scanner * voxel;
      ssize_t index = transform_list.size() - 1;
      while (index >= 0) {
        position = transform_list[index]->transform_point (position);
        index--;
      }
      output.row(3) = position;
    }
  }
}