1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
//
// MessagePack for C++ static resolution routine
//
// Copyright (C) 2017 KONDO Takatoshi
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef MSGPACK_V1_TYPE_CPP11_CHRONO_HPP
#define MSGPACK_V1_TYPE_CPP11_CHRONO_HPP
#include "msgpack/versioning.hpp"
#include "msgpack/adaptor/adaptor_base.hpp"
#include "msgpack/object.hpp"
#include "msgpack/adaptor/check_container_size.hpp"
#include <limits>
#include <chrono>
namespace msgpack {
/// @cond
MSGPACK_API_VERSION_NAMESPACE(v1) {
/// @endcond
namespace adaptor {
namespace detail {
template <
typename Target,
typename Source,
bool target_is_signed = std::is_signed<Target>::value,
bool source_is_signed = std::is_signed<Source>::value,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
struct would_underflow {
// The default case includes the cases that Source being unsigned, and since Source
// is unsigned, no underflow can happen
would_underflow(Source) : value{false} {}
bool value;
};
template <typename Target, typename Source>
struct would_underflow<Target, Source, false, true> {
// When Source is signed and Target is unsigned, we only need to compare with 0 to
// detect underflow, this works correctly and also avoids warnings from the compiler
would_underflow(Source source) : value{source < 0} {}
bool value;
};
template <typename Target, typename Source>
struct would_underflow<Target, Source, true, true> {
// When Source and Target are signed, the promotion rules apply sensibly so we do
// not need to do anything
would_underflow(Source source)
: value{source < std::numeric_limits<Target>::min()} {}
bool value;
};
template <
typename Target,
typename Source,
bool target_is_signed = std::is_signed<Target>::value,
bool source_is_signed = std::is_signed<Source>::value,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
struct would_overflow {
// The default case is Source and Target having the same signedness, the promotion
// rule also apply sensibly here so nothing special needs to be done
would_overflow(Source source)
: value{source > std::numeric_limits<Target>::max()} {}
bool value;
};
template <typename Target, typename Source>
struct would_overflow <Target, Source, false, true> {
// When Target is unsigned and Source is signed, we cannot rely on the promotion
// rule.
would_overflow(Source source)
: value{
sizeof(Target) >= sizeof(Source)
// Given Source is signed, Target being unsigned and having at least the
// same size makes impossible to overflow
? false
// Source being larger than Target makes it safe to cast the maximum value
// of Target to Source
: source > static_cast<Source>(std::numeric_limits<Target>::max())
} {}
bool value;
};
template <typename Target, typename Source>
struct would_overflow <Target, Source, true, false> {
// When Target is signed and Source is unsigned, we cannot rely on the promotion
// rule.
would_overflow(Source source)
: value{
sizeof(Target) > sizeof(Source)
// Target being larger than Source makes it impossible to overflow
? false
// Source being unsigned and having at least the size of Target makes it
// safe to cast the maximum value of Target to Source
: source > static_cast<Source>(std::numeric_limits<Target>::max())
} {}
bool value;
};
template <
typename Target,
typename Source,
typename = typename std::enable_if<
std::is_integral<Target>::value &&
std::is_integral<Source>::value
>::type
>
Target integral_cast(Source source) {
if (would_underflow<Target, Source>(source).value) {
throw std::underflow_error{
"casting from Source to Target causes an underflow error"
};
}
if(would_overflow<Target, Source>(source).value) {
throw std::overflow_error{
"casting from Source to Target causes an overflow error"
};
}
return static_cast<Target>(source);
}
} // namespace detail
template <typename Clock, typename Duration>
struct as<std::chrono::time_point<Clock, Duration>> {
typename std::chrono::time_point<Clock, Duration> operator()(msgpack::object const& o) const {
if(o.type != msgpack::type::EXT) { throw msgpack::type_error(); }
if(o.via.ext.type() != -1) { throw msgpack::type_error(); }
std::chrono::time_point<Clock, Duration> tp;
switch(o.via.ext.size) {
case 4: {
uint32_t sec;
_msgpack_load32(uint32_t, o.via.ext.data(), &sec);
tp += std::chrono::seconds(sec);
} break;
case 8: {
uint64_t value;
_msgpack_load64(uint64_t, o.via.ext.data(), &value);
uint32_t nanosec = detail::integral_cast<uint32_t>(value >> 34);
uint64_t sec = value & 0x00000003ffffffffLL;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
tp += std::chrono::seconds(sec);
} break;
case 12: {
uint32_t nanosec;
_msgpack_load32(uint32_t, o.via.ext.data(), &nanosec);
int64_t sec;
_msgpack_load64(int64_t, o.via.ext.data() + 4, &sec);
if (sec > 0) {
tp += std::chrono::seconds(sec);
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
}
else {
if (nanosec == 0) {
tp += std::chrono::seconds(sec);
}
else {
++sec;
tp += std::chrono::seconds(sec);
int64_t ns = detail::integral_cast<int64_t>(nanosec) - 1000000000L;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(ns));
}
}
} break;
default:
throw msgpack::type_error();
}
return tp;
}
};
template <typename Clock, typename Duration>
struct convert<std::chrono::time_point<Clock, Duration>> {
msgpack::object const& operator()(msgpack::object const& o, std::chrono::time_point<Clock, Duration>& v) const {
if(o.type != msgpack::type::EXT) { throw msgpack::type_error(); }
if(o.via.ext.type() != -1) { throw msgpack::type_error(); }
std::chrono::time_point<Clock, Duration> tp;
switch(o.via.ext.size) {
case 4: {
uint32_t sec;
_msgpack_load32(uint32_t, o.via.ext.data(), &sec);
tp += std::chrono::seconds(sec);
v = tp;
} break;
case 8: {
uint64_t value;
_msgpack_load64(uint64_t, o.via.ext.data(), &value);
uint32_t nanosec = detail::integral_cast<uint32_t>(value >> 34);
uint64_t sec = value & 0x00000003ffffffffLL;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
tp += std::chrono::seconds(sec);
v = tp;
} break;
case 12: {
uint32_t nanosec;
_msgpack_load32(uint32_t, o.via.ext.data(), &nanosec);
int64_t sec;
_msgpack_load64(int64_t, o.via.ext.data() + 4, &sec);
if (sec > 0) {
tp += std::chrono::seconds(sec);
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(nanosec));
}
else {
if (nanosec == 0) {
tp += std::chrono::seconds(sec);
}
else {
++sec;
tp += std::chrono::seconds(sec);
int64_t ns = detail::integral_cast<int64_t>(nanosec) - 1000000000L;
tp += std::chrono::duration_cast<Duration>(
std::chrono::nanoseconds(ns));
}
}
v = tp;
} break;
default:
throw msgpack::type_error();
}
return o;
}
};
template <typename Clock, typename Duration>
struct pack<std::chrono::time_point<Clock, Duration>> {
template <typename Stream>
msgpack::packer<Stream>& operator()(msgpack::packer<Stream>& o, std::chrono::time_point<Clock, Duration> const& v) const {
int64_t count = detail::integral_cast<int64_t>(v.time_since_epoch().count());
int64_t nano_num =
Duration::period::ratio::num *
(1000000000L / Duration::period::ratio::den);
int64_t nanosec = count % (1000000000L / nano_num) * nano_num;
int64_t sec = 0;
if (nanosec < 0) {
nanosec = 1000000000L + nanosec;
--sec;
}
sec += count
* Duration::period::ratio::num
/ Duration::period::ratio::den;
if ((sec >> 34) == 0) {
uint64_t data64 = (detail::integral_cast<uint64_t>(nanosec) << 34) | detail::integral_cast<uint64_t>(sec);
if ((data64 & 0xffffffff00000000L) == 0) {
// timestamp 32
o.pack_ext(4, -1);
uint32_t data32 = detail::integral_cast<uint32_t>(data64);
char buf[4];
_msgpack_store32(buf, data32);
o.pack_ext_body(buf, 4);
}
else {
// timestamp 64
o.pack_ext(8, -1);
char buf[8];
_msgpack_store64(buf, data64);
o.pack_ext_body(buf, 8);
}
}
else {
// timestamp 96
o.pack_ext(12, -1);
char buf[12];
_msgpack_store32(&buf[0], detail::integral_cast<uint32_t>(nanosec));
_msgpack_store64(&buf[4], sec);
o.pack_ext_body(buf, 12);
}
return o;
}
};
template <typename Clock, typename Duration>
struct object_with_zone<std::chrono::time_point<Clock, Duration>> {
void operator()(msgpack::object::with_zone& o, const std::chrono::time_point<Clock, Duration>& v) const {
int64_t count = detail::integral_cast<int64_t>(v.time_since_epoch().count());
int64_t nano_num =
Duration::period::ratio::num *
(1000000000L / Duration::period::ratio::den);
int64_t nanosec = count % (1000000000L / nano_num) * nano_num;
int64_t sec = 0;
if (nanosec < 0) {
nanosec = 1000000000L + nanosec;
--sec;
}
sec += count
* Duration::period::ratio::num
/ Duration::period::ratio::den;
if ((sec >> 34) == 0) {
uint64_t data64 = (detail::integral_cast<uint64_t>(nanosec) << 34) | detail::integral_cast<uint64_t>(sec);
if ((data64 & 0xffffffff00000000L) == 0) {
// timestamp 32
o.type = msgpack::type::EXT;
o.via.ext.size = 4;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
uint32_t data32 = detail::integral_cast<uint32_t>(data64);
_msgpack_store32(&p[1], data32);
o.via.ext.ptr = p;
}
else {
// timestamp 64
o.type = msgpack::type::EXT;
o.via.ext.size = 8;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
_msgpack_store64(&p[1], data64);
o.via.ext.ptr = p;
}
}
else {
// timestamp 96
o.type = msgpack::type::EXT;
o.via.ext.size = 12;
char* p = static_cast<char*>(o.zone.allocate_no_align(o.via.ext.size + 1));
p[0] = static_cast<char>(-1);
_msgpack_store32(&p[1], detail::integral_cast<uint32_t>(nanosec));
_msgpack_store64(&p[1 + 4], sec);
o.via.ext.ptr = p;
}
}
};
} // namespace adaptor
/// @cond
} // MSGPACK_API_VERSION_NAMESPACE(v1)
/// @endcond
} // namespace msgpack
#endif // MSGPACK_V1_TYPE_CPP11_CHRONO_HPP
|