1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
===========================
MessagePack Python Binding
===========================
:author: INADA Naoki
:version: 0.3.0
:date: 2012-12-07
.. image:: https://secure.travis-ci.org/msgpack/msgpack-python.png
:target: https://travis-ci.org/#!/msgpack/msgpack-python
WHAT IT IS
----------
`MessagePack <http://msgpack.org/>`_ is a fast, compact binary serialization format, suitable for
similar data to JSON. This package provides CPython bindings for reading and
writing MessagePack data.
NOTE for msgpack 0.2.x users
----------------------------
The msgpack 0.3 have some incompatible changes.
The default value of ``use_list`` keyword argument is ``True`` from 0.3.x.
You should pass the argument explicitly for backward compatibility.
`Unpacker.unpack()` and some unpack methods now raises `OutOfData`
instead of `StopIteration`.
`StopIteration` is used for iterator protocol only.
HOW TO USE
-----------
one-shot pack & unpack
^^^^^^^^^^^^^^^^^^^^^^
Use ``packb`` for packing and ``unpackb`` for unpacking.
msgpack provides ``dumps`` and ``loads`` as alias for compatibility with
``json`` and ``pickle``.
``pack`` and ``dump`` packs to file-like object.
``unpack`` and ``load`` unpacks from file-like object.
::
>>> import msgpack
>>> msgpack.packb([1, 2, 3])
'\x93\x01\x02\x03'
>>> msgpack.unpackb(_)
[1, 2, 3]
``unpack`` unpacks msgpack's array to Python's list, but can unpack to tuple::
>>> msgpack.unpackb(b'\x93\x01\x02\x03', use_list=False)
(1, 2, 3)
You should always pass the ``use_list`` keyword argument. See performance issues relating to use_list_ below.
Read the docstring for other options.
streaming unpacking
^^^^^^^^^^^^^^^^^^^
``Unpacker`` is a "streaming unpacker". It unpacks multiple objects from one
stream (or from bytes provided through its ``feed`` method).
::
import msgpack
from io import BytesIO
buf = BytesIO()
for i in range(100):
buf.write(msgpack.packb(range(i)))
buf.seek(0)
unpacker = msgpack.Unpacker(buf)
for unpacked in unpacker:
print unpacked
packing/unpacking of custom data type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
It is also possible to pack/unpack custom data types. Here is an example for
``datetime.datetime``.
::
import datetime
import msgpack
useful_dict = {
"id": 1,
"created": datetime.datetime.now(),
}
def decode_datetime(obj):
if b'__datetime__' in obj:
obj = datetime.datetime.strptime(obj["as_str"], "%Y%m%dT%H:%M:%S.%f")
return obj
def encode_datetime(obj):
if isinstance(obj, datetime.datetime):
return {'__datetime__': True, 'as_str': obj.strftime("%Y%m%dT%H:%M:%S.%f")}
return obj
packed_dict = msgpack.packb(useful_dict, default=encode_datetime)
this_dict_again = msgpack.unpackb(packed_dict, object_hook=decode_datetime)
``Unpacker``'s ``object_hook`` callback receives a dict; the
``object_pairs_hook`` callback may instead be used to receive a list of
key-value pairs.
advanced unpacking control
^^^^^^^^^^^^^^^^^^^^^^^^^^
As an alternative to iteration, ``Unpacker`` objects provide ``unpack``,
``skip``, ``read_array_header`` and ``read_map_header`` methods. The former two
read an entire message from the stream, respectively deserialising and returning
the result, or ignoring it. The latter two methods return the number of elements
in the upcoming container, so that each element in an array, or key-value pair
in a map, can be unpacked or skipped individually.
Warning: these methods raise ``StopIteration`` when called at the end of the
stream. Unless caught, this may silently break an iteration.
Each of these methods may optionally write the packed data it reads to a
callback function:
::
from io import BytesIO
def distribute(unpacker, get_worker):
nelems = unpacker.read_map_header()
for i in range(nelems):
# Select a worker for the given key
key = unpacker.unpack()
worker = get_worker(key)
# Send the value as a packed message to worker
bytestream = BytesIO()
unpacker.skip(bytestream.write)
worker.send(bytestream.getvalue())
INSTALL
---------
You can use ``pip`` or ``easy_install`` to install msgpack::
$ easy_install msgpack-python
or
$ pip install msgpack-python
Windows
^^^^^^^
msgpack provides some binary distribution for Windows.
You can install msgpack without compiler with them.
When you can't use binary distribution, you need to install Visual Studio
or Windows SDK on Windows. (NOTE: Visual C++ Express 2010 doesn't support
amd64. Windows SDK is recommanded way to build amd64 msgpack without any fee.)
PERFORMANCE NOTE
-----------------
GC
^^
CPython's GC starts when growing allocated object.
This means unpacking may cause useless GC.
You can use ``gc.disable()`` when unpacking large message.
use_list
^^^^^^^^^
List is the default sequence type of Python.
But tuple is lighter than list.
You can use ``use_list=False`` while unpacking when performance is important.
Python's dict can't use list as key and MessagePack allows array for key of mapping.
``use_list=False`` allows unpacking such message.
Another way to unpacking such object is using ``object_pairs_hook``.
TEST
----
MessagePack uses `nosetest` for testing.
Run test with following command:
$ nosetests test
..
vim: filetype=rst
|