1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
|
\documentclass[a4paper,english,11pt]{scrartcl}
\usepackage{ifpdf}
\ifpdf
\pdfoutput=1
\fi
%\usepackage[DIV=9]{typearea}
\KOMAoptions{DIV=12,abstract=true}
%%%%% PAQUETS
% Base
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{amsmath,amssymb,amsfonts,amsthm}
\usepackage[usenames,dvipsnames,svgnames,table,hyperref]{xcolor}
\usepackage{eurosym}
\usepackage{listings}
\lstset{
basicstyle=\tiny\ttfamily,
columns=flexible,
breaklines=true
}
% Typographies
\usepackage{microtype}
\usepackage{mathtools} % Pour mathrlap et compagnie
\usepackage{booktabs} % De beaux tableaux
\usepackage{array}
\newcolumntype{R}[1]{>{\raggedleft\let\newline\\\arraybackslash\hspace{0pt}}p{#1}}
\usepackage[]{csquotes}
\usepackage{xspace}
%\usepackage{fontawesome}
% Graphiques
%\usepackage{tikz}
%\usepackage{tikz-cd}
%\usetikzlibrary{calc,intersections,angles,quotes}
\usepackage{float}
\usepackage[]{graphicx}
% Divers
\usepackage[]{url}
\usepackage[backgroundcolor=white,linecolor=red]{todonotes}
\usepackage[shortlabels,inline]{enumitem}
\setlist[description]{labelindent=!,labelsep=1em,font=\normalfont\bfseries}
\usepackage{bm}
\usepackage{libertine} % NOARXIV
\usepackage[libertine,vvarbb]{newtxmath} % NOARXIV
\setkomafont{sectioning}{\bfseries\rmfamily}
\setkomafont{title}{}
\usepackage[ruled]{caption} % La légende des boites flottantes
\captionsetup{format=hang,justification=raggedright,font=small,width=.95\textwidth,labelfont=it,labelsep=period}
\usepackage[titles]{tocloft}
\usepackage{setspace}
\setstretch{1.07}
\setdisplayskipstretch{.6}
% Algorithms
\usepackage[]{algpseudocode}
\floatstyle{ruled}
\newfloat{algo}{tp}{lop}
\floatname{algo}{Algorithm}
\setcounter{topnumber}{1} % Pas plus d'une boite flottante en haut d'une page.
\setcounter{bottomnumber}{1} % idem mais en bas
% scale texttt
\usepackage[scaled=.75]{beramono}
% PL : Chez moi, \tt, \sf, \bf, etc ne fonctionnent pas.
\def\sf{} % Il faudrait remplacer par \mathsf mais la syntaxe n'est pas la même
\def\tt{\ttfamily}
\definecolor{darkgoldenrod}{rgb}{0.72, 0.53, 0.04}
\definecolor{amber}{rgb}{1.0, 0.75, 0.0}
\definecolor{mred}{rgb}{.886,.239,.157}
\definecolor{darkblue}{RGB}{63,101,134}
% \usepackage[]{tocstyle}
% \usetocstyle{nopagecolumn}
% \settocstylefeature{pagenumberhook}{\normalfont\itshape\color{darkgoldenrod}}
% \setkomafont{sectionentrypagenumber}{\itshape\color{darkgoldenrod}}
\typearea{10}
\setkomafont{title}{\raggedright\sffamily\bfseries\color{darkblue}}
\setkomafont{title}{\raggedright\sffamily\bfseries\color{darkgoldenrod}}
\addtokomafont{subtitle}{\normalfont\sffamily\raggedright\Large\itshape}
\setkomafont{subject}{\raggedright\Large\sffamily\medls}
\addtokomafont{author}{\raggedright\sffamily\setlength{\tabcolsep}{0pt}}
\setkomafont{pageheadfoot}{\sffamily}
\setkomafont{pagenumber}{\sffamily}
\setkomafont{titlehead}{\sffamily}
%\addtokomafont{section}{\color{darkblue}}
\addtokomafont{section}{\color{darkgoldenrod}}
%\addtokomafont{subsection}{\color{darkblue}}
\addtokomafont{subsection}{\color{darkgoldenrod}}
%\addtokomafont{subsubsection}{\normalfont\itshape\color{darkblue}}
\addtokomafont{subsubsection}{\normalfont\itshape\color{darkgoldenrod}}
%\addtokomafont{paragraph}{\normalfont\itshape\color{darkblue}}
\addtokomafont{paragraph}{\normalfont\itshape\color{darkgoldenrod}}
\ifpdf
\usepackage[
linktocpage=true,
hyperfootnotes=false,
pdftex, %
bookmarks = true,% % Signets
bookmarksnumbered = true,% % Signets numerotes
pdfpagemode = None,% % Signets/vignettes fermes a l'ouverture
pdfstartview = FitH,% % La page prend toute la largeur
pdfpagelayout = SinglePage,% Vue par page
colorlinks = true,% % Liens en couleur
linkcolor= red, % % couleur des liens internes
citecolor =blue,
urlcolor = magenta,% % Couleur des liens externes
pdfborder = {0 0 0}% % Style de bordure : ici, pas de bordure
]{hyperref}% % Utilisation de HyperTeX
\else
\usepackage[
linktocpage=true,
hyperfootnotes=false,
bookmarks = true,% % Signets
bookmarksnumbered = true,% % Signets numerotes
pdfpagemode = None,% % Signets/vignettes fermes a l'ouverture
pdfstartview = FitH,% % La page prend toute la largeur
pdfpagelayout = SinglePage,% Vue par page
colorlinks = true,% % Liens en couleur
linkcolor= red, % % couleur des liens internes
citecolor =blue,
urlcolor = magenta,% % Couleur des liens externes
pdfborder = {0 0 0}% % Style de bordure : ici, pas de bordure
]{hyperref}% % Utilisation de HyperTeX
\fi
\hypersetup{
linkcolor=blue!60!black,
citecolor=red, %OrangeRed, %Emerald, %OliveGreen,
urlcolor=blue, %BlueViolet %NavyBlue
}
\hypersetup{colorlinks=true}
\usepackage{framed}
%\usepackage{bm}
\usepackage{cleveref}
\graphicspath{{../fwf_anr_2017/etc/}}
\usepackage{tcolorbox}
\tcbuselibrary{skins}
\usepackage{pgfgantt}
\usepackage{pgfplots}
\usetikzlibrary{positioning}
\usetikzlibrary{fit}
\usetikzlibrary{backgrounds}
\usetikzlibrary{calc}
%%SG\usetikzlibrary{shapes,fpu,arrows,arrows.meta,calc,matrix,shapes.geometric,decorations.pathmorphing,intersections,fit,external,backgrounds,spy}
%\usetikzlibrary{mindmap}
%\usetikzlibrary{decorations.text}
%\tikzset{box1/.style={draw=black, thick, rectangle,rounded corners, minimum height=2cm, minimum width=2cm}}
\tikzset{box1/.style={draw=black, thick, rectangle,rounded corners, fill=black!7!white}}
\tikzset{box2/.style={draw=black, thick, rectangle,rounded corners, fill=black!7!white, minimum height=3cm}}
\tikzset{annot/.style={draw=black,thick,rounded corners,anchor=base, fill=red!10!white}}
\newtcolorbox[auto counter]{challenge}[2][]{
colframe=white!40!black,coltext=white!25!black,colback=white
,fonttitle=\bfseries, title=Exercise~\thetcbcounter}
\usepackage{fancyhdr}
\usepackage{verbatim}
\allowdisplaybreaks[4]
\newtheorem{proposition}{Proposition}
\newtheorem{lemma}[proposition]{Lemma}
\newtheorem{theorem}[proposition]{Theorem}
\newtheorem{corollary}[proposition]{Corollary}
\newtheorem{definition}[proposition]{Definition}
\newtheorem{conjecture}[proposition]{Conjecture}
\newtheorem*{question}{Problem}
% \def\mbbone{\mathbf{1}} % ONLYARXIV
\def\mbbone{\mathbb{1}} % NOARXIV
\theoremstyle{definition}
\newtheorem{example}[proposition]{Example}
\theoremstyle{remark}
%\newtheorem{example}[proposition]{Example}
\newtheorem*{remark}{Remark}
\newcommand{\cmment}[1]{}
\newcommand{\mop}[1]{\operatorname{#1}}
\newcommand{\ud}{\mathrm{d}}
\newcommand{\st}{\ \middle|\ }
%\newcommand{\eqdef}{\smash{\ \stackrel{\text{def}}{=}\ }}
\newcommand{\eqdef}{\triangleq}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\bA}{{\mathbb{A}}}
\newcommand{\bE}{{\mathbb{E}}}
\newcommand{\bP}{{\mathbb{P}}}
\newcommand{\bN}{{\mathbb{N}}}
\newcommand{\bC}{{\mathbb{C}}}
\newcommand{\bQ}{{\mathbb{Q}}}
\newcommand{\bR}{{\mathbb{R}}}
\newcommand{\bF}{{\mathbb{F}}}
\newcommand{\bK}{{\mathbb{K}}}
\newcommand{\bS}{{\mathbb{S}}}
\newcommand{\bZ}{{\mathbb{Z}}}
\newcommand{\cL}{{\mathcal{L}}}
\newcommand{\cB}{{\mathcal{B}}}
\newcommand{\cD}{{\mathcal{D}}}
\newcommand{\cY}{{\mathcal{Y}}}
\newcommand{\cT}{{\mathcal{T}}}
\newcommand{\cS}{{\mathcal{S}}}
\newcommand{\cN}{{\mathcal{N}}}
\newcommand{\cO}{{\mathcal{O}}}
\newcommand{\cH}{{\mathcal{H}}}
\newcommand{\cU}{{\mathcal{U}}}
\newcommand{\vol}{\mop{vol}}
\newcommand{\Sqrt}{\mop{Sqrt}}
\newcommand{\Sin}{\mop{Sin}}
\newcommand{\Cos}{\mop{Cos}}
\newcommand{\NJ}{\mop{NJ}}
\newcommand{\Proj}{\ensuremath{\bP^n}}
\newcommand{\intx}[1]{\int_{\mathrlap{#1}}}
\newcommand{\muav}{\mu_{\textrm{av}}}
\newcommand\Fquatre{\textsc{\texorpdfstring{F\textsubscript{4}}{F4}}\xspace}
\def\geq{\geqslant}
\def\leq{\leqslant}
\makeatletter
\def\cqlt{c.ql.t\@ifnextchar{.}{}{.\xspace}}
%\bf and KOMA do not work in jcapco TeX distribution it complains that \bf is an old command if KOMA is active
\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}
\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf}
\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt}
\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf}
\DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit}
\DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl}
\DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc}
\makeatother
%\usepackage[pdftex,hypertexnames=false,hidelinks]{hyperref}
\input{macros.tex}
% \newtheorem{pbm}{Problem}
% \newtheorem{definition}{Definition}
% \newtheorem{theorem}[definition]{Theorem}
% \newtheorem{corollary}[definition]{Corollary}
% \newtheorem{proposition}[definition]{Proposition}
% \newtheorem{lemma}[definition]{Lemma}
% \newtheorem{remark}[definition]{Remark}
\titlehead{\ACRONYM}
\title{How to solve multivariate polynomial systems with {\msolve}?}
\date{}
\usepackage[
% citestyle=authoryear,
bibstyle=authoryear,
citestyle=numeric,
bibstyle=numeric,
% dashed=false,
backend=biber,
isbn=false,
doi=false,url=false,
maxcitenames=50,
hyperref=true,
maxbibnames=20,
firstinits=true
]{biblatex}
\bibliography{biblio}
\usepackage{mathrsfs}
\begin{document}
\maketitle
\tableofcontents
\section{Introduction}
\msolve~is a C library for solving multivariate polynomial systems of equations.
It relies on computer algebra, a.k.a.\ symbolic computation, algorithms to
compute \emph{algebraic} representations of the solution set from which
many, if not all, informations can be extracted.
Solving polynomial systems with \msolve~is \emph{global} by contrast to
\emph{local} numerical routines. The use of computer algebra methods allow also
the user to bypass classical numerical issues encountered by numerical methods
for polynomial system solving such as those based on numerical homotopy
continuation or semi-definite programming.
\msolve~relies mainly on Gr\"obner bases algorithms (see below for a some basic
definitions and properties). It is highly optimized, uses \texttt{AVX2}
vectorization instructions and multi-threading.
It uses the \href{https://gmplib.org/}{\texttt{GMP}} library (handling
multi-precision integers) and the \href{https://flintlib.org/}{\texttt{FLINT}}
library (handling arithmetics of univariate polynomials).
\msolve~can be downloaded from
\begin{center}
\url{https://msolve.lip6.fr}
\end{center}
where binaries (for \texttt{x86} processors runing Linux operating systems) and
source files are provided.
\msolve~is designed for $64$ bit architectures, with \texttt{AVX2} instructions.
\msolve allows you to:
\begin{itemize}
\item isolate all real solutions to polynomial systems with rational
coefficients and finitely many complex solutions;
\item compute Gr\"obner bases of polynomial systems with coefficients which are
either rational numbers or in a prime field $\mathbb{Z}/p\mathbb{Z}$ with $p <
2^{31}$;
\item compute parametrizations of the solutions of polynomial systems with
coefficients which are either rational numbers or in a prime field
$\mathbb{Z}/p\mathbb{Z}$ with $p < 2^{31}$ (assuming that the system has
finitely many solutions with coordinates in an algebraic closure of the field
generated by the input coefficients).
\end{itemize}
\msolve is based on Gr\"obner bases computations. When launching \msolve on
an input polynomial system (see the file format in~\cref{sec:input}), a Gr\"obner
basis computation starts and allows \msolve to determine if the number of solutions
to the system is infinite or finite in an algebraic closure of the base field
(the complex numbers when the input coefficients are rational numbers).
When the number of solutions is finite, one says that the system (or the ideal
generated by the input equations) has dimension zero at most. Else it has positive
dimension.
\Cref{sec:dim} shows how \msolve behaves when the input system has positive dimension
or when there is no solution at all in an algebraic closure of the base field (over
the complex numbers when the input coefficients are rational numbers).
When the system has dimension at most zero, \msolve can compute the real solutions
or, as said above, compute a Gr\"obner basis (when the base field is a prime field)
or compute a parametrization of the solutions.
\Cref{sec:solvingreals} shows how to use \msolve for solving polynomial
systems over the reals when they have dimension at most zero.
\Cref{sec:grobner} shows how to use \msolve for computing
Gr\"obner bases over prime fields (with some restriction on the bit size of the
considered prime). \Cref{sec:param} shows how to use \msolve for computing rational
parametrizations of solutions to polynomial systems which have dimension at most
zero. Finally, \cref{sec:flags} summarizes some options which can be used rational
parametrizations of solutions to polynomial systems which have dimension at most
zero. Finally, \cref{sec:flags} summarizes some options which can be used.
The \msolve library is described in \cite{msolve} with implementation details on
the algorithms used therein. All computations performed over the rational numbers
(e.g. for computing real roots) are based on multi-modular computations with a
probabilistic stopping criterion. Unless explicitely requested by the user (see the
\verb+-l+ flag in \cref{sec:flags}), all computations of Gr\"obner bases
in prime fields use deterministic
algorithms. Change of order algorithms which are used are deterministic
when the input ideal is radical.
\section{Input file format}\label{sec:input}
\msolve allows you to solve polynomial systems either with coefficients
which are either rational numbers or in a prime field $\mathbb{Z}/p\mathbb{Z}$
with $p < 2^{31}$. If you aim at solving polynomial systems with coefficients
which are floating point numbers, you can just replace these floating point
numbers with rational numbers. Further, we explain how the input files of
\msolve should be.
Consider the following polynomial system of equations
\[
\begin{array}{rcl}
x+2 y+2 z-1 &= &0\\
x^2+2 y^2+2 z^2-x &= &0\\
2 x y+2 y z-y &= &0
\end{array}
\]
in $\Q[x,y,z]$.
In order to solve it with \msolve~one simply produces a file with the following content
\msolveinput{examples/simple_char0.ms}
Hence the structure of input files to \msolve is as follows:
\begin{enumerate}
\item the first line contains the variables of the input system, separated with
a comma (no comma at end of line);
\item the second line contains the characteristic of the field over which
computations are performed;
\item the next lines contain polynomials, in expanded form, separated by a comma
and with a line break (no comma or line break for the last one).
\end{enumerate}
In each given polynomial, \msolve expects a single occurrence of each monomial;
if some monomial appears several times (e.g.\ as in \verb#x+2*y+2*z-x#),
the behaviour of \msolve's parser is undefined.
When one wants to solve this system over $\frac{\Z}{65521\Z}$ one just replaces
$0$ by $65521$ in the second line. Note that in the positive characteristic case
the coefficients used should be smaller or equal to $2^{31}-1$.
\msolveinput{examples/simple_char65521.ms}
\section{Computing the dimension}\label{sec:dim}
To make things explicit on the behaviour of \msolve when the input system
does not have finitely many complex solutions, let us consider first the example
below.
\msolveinput{examples/empty_char0.ms}
Then, \msolve outputs
\begin{tcolorbox} % examples/empty_char0.res
\begin{lstlisting}[basicstyle=\normalsize\ttfamily]
[-1]:
\end{lstlisting}
\end{tcolorbox}
indicating that the dimension of the set of complex solutions is $-1$, hence it
is empty.
If now, one considers the following example.
\msolveinput{examples/hypersurface_char0.ms}
Then, \msolve outputs
\begin{tcolorbox} % examples/hypersurface_char0.res
\begin{lstlisting}[basicstyle=\normalsize\ttfamily]
[1, 3, -1, []]:
\end{lstlisting}
\end{tcolorbox}
The first integer $1$ indicates that the complex solution is positive
dimensional (note that the actual dimension of the complex solution set is $2$).
\section{Solving over the reals (finitely many solutions)}\label{sec:solvingreals}
The basic functionality \msolve allows you to perform is real root
isolation for polynomial systems with rational coefficients and {\em with
finitely many complex solutions}. This latter requirement is automatically
tested by \msolve.
For instance, consider the following input to \msolve written in a file
\verb+in.ms+.
\msolveinput{examples/reals_dim0.ms}
Then, typing the following command line
\begin{tcolorbox} % examples/reals_dim0.sh
\begin{verbatim}
./msolve -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
will display in the \verb+out.ms+ file the following content.
\begin{tcolorbox} % examples/reals_dim0.res
\begin{lstlisting}
[0, [1,
[[[107291359935630315248585097660753910587 / 2^127, 26822839983907578812146274415188477647 / 2^125], [107291359935630315248585097660753910587 / 2^128, 26822839983907578812146274415188477647 / 2^126], [-355532291286331190123863132844989723573 / 2^131, -1422129165145324760495452531379958894291 / 2^133]], [[1, 1], [0, 0], [0, 0]], [[38543940173343311950004019810003894311 / 2^127, 77087880346686623900008039620007788667 / 2^128], [9635985043335827987501004952500973579 / 2^126, 4817992521667913993750502476250486791 / 2^125], [93053303113782607831679264095876317083 / 2^128, 372213212455130431326717056383505268333 / 2^130]], [[7089215977519551322153637654828504405 / 2^124, 113427455640312821154458202477256070491 / 2^128], [-1 / 2^127, 1 / 2^127], [1814839290245005138471331239636097127765 / 2^132, 907419645122502569235665619818048563883 / 2^131]]]
]]:
\end{lstlisting}
\end{tcolorbox}
This is a list whose first element is the integer $0$ indicating that the input
polynomial system has finitely many complex solutions. The second element of
this list is a list which provides the coordinates of the real solutions as
follows:
\begin{itemize}
\item the first element is an integer $\ell$ indicating how many lists are given
further; in the above example, the integer $1$ tells that we have a single
list (this will be the usual case);
\item the next are $\ell$ lists $L_1, \ldots, L_\ell$ which encode the solutions
to the input system; each of them containing boxes isolating a single real
solution.
\end{itemize}
For instance, from the above output, we deduce that the box defined by
\[
\left \{
\begin{array}{l}
\frac{107291359935630315248585097660753910587}{2^{127}}
\leq x \leq
\frac{26822839983907578812146274415188477647}{2^{125}}, \\
\frac{107291359935630315248585097660753910587}{2^{128}}
\leq y \leq
\frac{26822839983907578812146274415188477647}{2^{126}}, \\
\frac{-355532291286331190123863132844989723573}{2^{131}}
\leq z \leq
\frac{-1422129165145324760495452531379958894291}{2^{133}}
\end{array}\right .
\]
contains a single real solution to the input system.
Sometimes, it makes sense to increase the precision. To do that, we use the
\verb+-p+ flag, followed by an integer monitoring the used precision, as
follows.
\begin{tcolorbox} % examples/reals_dim0_prec256.sh
\begin{verbatim}
./msolve -p 256 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
We obtain in \verb+out.ms+ the following
\begin{tcolorbox} % examples/reals_dim0_prec256.res
\begin{lstlisting}
[0, [1,
[[[36509357909062631536129668436573070012487487067100583303001175658946635606055 / 2^255, 4563669738632828942016208554571633751560935883387572912875146957368329450757 / 2^252], [36509357909062631536129668436573070012487487067100583303001175658946635606055 / 2^256, 4563669738632828942016208554571633751560935883387572912875146957368329450757 / 2^253], [-60490684797868661441895377475208744393359927205523538345094237255746825568573 / 2^258, -483925478382949291535163019801669955146879417644188306760753898045974604548583 / 2^261]], [[1, 1], [0, 0], [0, 0]], [[3278955798161077339921616998930436909728483733114914607048732943254033559905 / 2^253, 26231646385288618719372935991443495277827869864919316856389863546032268479285 / 2^256], [6557911596322154679843233997860873819456967466229829214097465886508067119813 / 2^255, 13115823192644309359686467995721747638913934932459658428194931773016134239637 / 2^256], [63328796466738957984825113025800917297614244935801930326677856915848592681411 / 2^257, 126657592933477915969650226051601834595228489871603860653355713831697185362823 / 2^258]], [[2412335192444087404657728854347664746943124680534178417488699666831523534165 / 2^252, 38597363079105398474523661669562635951089994888546854679819194669304376546651 / 2^256], [-1 / 2^255, 1 / 2^255], [617557809265686375592378586713002175217439918216749674877107114708870024746325 / 2^260, 308778904632843187796189293356501087608719959108374837438553557354435012373163 / 2^259]]]
]]:
\end{lstlisting}
\end{tcolorbox}
\section{Computing Gr\"obner bases}\label{sec:grobner}
\msolve relies on Gr\"obner bases algorithms which allow one to rewrite the
input polynomial system as an equivalent system which reveals properties of the
solution set (dimension, degree) and to compute ``modulo'' the input equations.
\msolve provides Gr\"obner bases computations for the so-called \emph{grevlex}
ordering (see e.g.~\cite{CLO}) when the coefficients either lie in the field of
rational numbers or when they lie in the prime field case. For instance, assume
the file \verb+in.ms+ contains the following:
\msolveinput{examples/grevlex_char1073741827.ms} Now, typing the following
command:
\begin{tcolorbox} % examples/grevlex_char1073741827.sh
\begin{verbatim}
./msolve -g 2 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
where the \verb+-g+ flag indicates that one aims at computing a Gr\"obner
basis. The value \verb+2+ tells \msolve to compute the Gr\"obner basis for the
\emph{grevlex order} with $z_1\succ z_2 \succ z_3 $. The computed Gr\"obner basis
is then printed in the file \verb+out.ms+ as follows.
\begin{tcolorbox} % examples/grevlex_char1073741827.res
\begin{lstlisting}
#Reduced Groebner basis data
#---
#field characteristic: 1073741827
#variable order: z1, z2, z3
#monomial order: graded reverse lexicographical
#length of basis: 6 elements sorted by increasing leading monomials
#---
[1*z2^2+832149913*z1^1*z3^1+876889156*z3^2+295279002*z1^1+724775733*z2^1+143165573*z3^1,
1*z1^1*z2^1+613566759*z2^1*z3^1+766958448*z3^2+766958448*z1^1+613566759*z3^1+153391691,
1*z1^2+134217730*z1^1*z3^1+268435458*z3^2+671088642*z1^1+671088642*z2^1,
1*z2^1*z3^2+722232944*z3^3+180778379*z1^1*z3^1+1027531442*z2^1*z3^1+173735741*z3^2+936498976*z1^1+702034498*z2^1+921316952*z3^1+59915395,
1*z1^1*z3^2+557357968*z3^3+911535897*z1^1*z3^1+419648179*z2^1*z3^1+96648475*z3^2+698659259*z1^1+282295066*z2^1+885328953*z3^1+769127629,
1*z3^4+250491376*z3^3+716275774*z1^1*z3^1+91652836*z2^1*z3^1+88303466*z3^2+855797860*z1^1+18642214*z2^1+728901227*z3^1+969918485]:
\end{lstlisting}
\end{tcolorbox}
When one is interested only in the leading monomials of the Gr\"obner basis
(which is a way smaller output), one simply uses the \verb+-g 1+ flag as follows
\begin{tcolorbox} % examples/grevlex_lm_char1073741827.sh
\begin{verbatim}
./msolve -g 1 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
and we obtain:
\begin{tcolorbox} % examples/grevlex_lm_char1073741827.res
\begin{lstlisting}
#Leading ideal data
#---
#field characteristic: 1073741827
#variable order: z1, z2, z3
#monomial order: graded reverse lexicographical
#length of basis: 6 elements sorted by increasing leading monomials
#---
[z2^2,
z1^1*z2^1,
z1^2,
z2^1*z3^2,
z1^1*z3^2,
z3^4]:
\end{lstlisting}
\end{tcolorbox}
Note that from this list of monomials, one can deduce the Hilbert series of the
ideal generated by the input equations and then its dimension and its degree
(see~\cite{CLO}).
Note that when the \verb+-g 1+ flag is used in characteristic $0$, the result is
always probabilistic: the leading monomials are deduced from two computations
over a prime field, the first prime being chosen randomly.
For instance, in the above example, one can deduce that the ideal has dimension
$0$ (finitely many solutions with coordinates in an algebraic closure of
$\frac{\mathbb{Z}}{1073741827\mathbb{Z}}$) since the basis of leading monomials
contain pure powers of all variables. The degree of the ideal is also $8$ since
there are $8$ monomials in $z_1, z_2, z_3$ which are not divisible by the above
leading monomials.
\msolve also allows you to perform Gröbner bases computations using
\emph{one-block elimination monomial order}
thanks to the \verb+-e+ flag. The following command
\begin{tcolorbox} % examples/elim_char1073741827.sh
\begin{verbatim}
./msolve -e 1 -g 2 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
on
\msolveinput{examples/elim_char1073741827.ms}
will perform the Gröbner basis computation eliminating the first
variable.
The output is
\begin{tcolorbox}
\begin{lstlisting}
#Reduced Groebner basis data
#---
#field characteristic: 1073741827
#variable order: t, w, x, y, z
#monomial order: eliminating first variable, blocks: graded reverse lexicographical
#length of basis: 7 elements sorted by increasing leading monomials
#---
[1*w^1*y^3+1073741826*x^1*z^3,
1*x^4,
1*w^1*x^3,
1*w^2*x^2,
1*w^3*x^1,
1*w^4,
1*t^1*z^1+1073741826]:
\end{lstlisting}
\end{tcolorbox}
where we see that the first $6$ polynomials are only in $w,x,y,z$,
which corresponds to the elimination of the variable $t$. When the input
coefficients lie in the field of rational numbers (hence, characteristic $0$),
the returned Gröbner basis is the one of the {\em elimination ideal}, i.e. they
have partial degree $0$ in the variables to eliminate.
More generally, using \verb+-e k+ will eliminate the $k$ first
variables. Thus
\begin{tcolorbox} % examples/elim2_char1073741827.sh
\begin{verbatim}
./msolve -e 2 -g 2 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
will eliminate $t$ and $w$, yielding
\begin{tcolorbox} % examples/elim2_char1073741827.res
\begin{lstlisting}
#Reduced Groebner basis data
#---
#field characteristic: 1073741827
#variable order: t, w, x, y, z
#monomial order: eliminating first 2 variables, blocks: graded reverse lexicographical
#length of basis: 7 elements sorted by increasing leading monomials
#---
[1*x^4,
1*w^1*y^3+1073741826*x^1*z^3,
1*w^1*x^3,
1*t^1*z^1+1073741826,
1*w^2*x^2,
1*w^3*x^1,
1*w^4]:
#Reduced Groebner basis for input in characteristic 1073741827
#for variable order t, w, x, y, z
#w.r.t. grevlex monomial ordering
#consisting of 7 elements:
[1*x^4,
1*w^1*y^3+1073741826*x^1*z^3,
1*w^1*x^3,
1*t^1*z^1+1073741826,
1*w^2*x^2,
1*w^3*x^1,
1*w^4]:
\end{lstlisting}
\end{tcolorbox}
where we see that only the first polynomial is not in $t$ and $w$.
\section{Parametrizations of (finitely many) solutions}
\label{sec:param}
Assume that the input polynomials have coefficients in some field $\K$ with
variables $x_1, \ldots, x_n$. In the case of polynomial systems of dimension
$0$, \msolve computes by default a zero-dimensional parametrization of the
solution set. The user can obtain such an encoding using the \verb+-P+ flag
(see below).
Let us recall what a rational parametrization is.
This is a couple $(\mathscr{P}, \ell)$ where $\ell$ is a linear form $\lambda_1
x_1 + \cdots + \lambda_n x_n$ with $\lambda_i\in \K$ (for $1\leq i \leq n$),
$\mathscr{P}$ is a sequence of polynomials $(w, w', v_1, \ldots, v_n)$ in
$\K[t]$ where $t$ is a new variable such that:
\begin{itemize}
\item when $\K$ is a prime field, $w'=1$ else $w' = \frac{\partial w}{\partial
t}$;
\item $\deg(v_i) < \deg(w)$ for $1\leq i \leq n$;
\item $\lambda_1 v_1 +\cdots +\lambda_n v_n = tw' \mod w$
\end{itemize}
and the solution set to the input polynomials coincides with the set:
\[
\left \{\left (-\frac{v_1(\vartheta)}{w'(\vartheta)}, \ldots,
-\frac{v_n(\vartheta)}{w'(\vartheta)}\right ) \st w(\vartheta) = 0
\right\}.
\]
In algebraic words, the polynomials \(w' x_i + v_i\) belong to the radical of the
ideal generated by the input equations and the form \(\lambda_1 x_1 + \cdots +
\lambda_n x_n + t\).
\msolve outputs univariate polynomials as an array \verb+[deg,L]+ where
\verb+deg+ is the degree of the polynomial under consideration and \verb+L+ is
the array of its coefficients in the monomial basis by increasing degree and
\verb+c+ is a denominator to all coefficients. For instance, the polynomial
\(x^2+3x-2\) is encoded by
\begin{verbatim}
[2, [-2, 3, 1]]
\end{verbatim}
We first explain \msolve's output in the case where the input coefficients are
rational numbers (the characteristic zero case).
For an input in the file \verb+in.ms+
\msolveinput{examples/param_simple.ms}
the command
\begin{tcolorbox} % examples/param_simple.sh
\begin{verbatim}
./msolve -P 2 -f in.ms
\end{verbatim}
\end{tcolorbox}
\msolve outputs is
\begin{tcolorbox} % examples/param_simple.res
\begin{lstlisting}
[0, [0,
3,
4,
['z1', 'z2', 'A'],
[-119/576,69/576,5/576],
[1,
[[4, [883600, 0, -18922, 0, 25]],
[3, [0, -37844, 0, 100]],
[
[[3, [223720, 0, -1190, 0]],
1],
[[3, [129720, 0, 690, 0]],
1]
]]]]]:
\end{lstlisting}
\end{tcolorbox}
and
has the following structure
\begin{tcolorbox}
\begin{lstlisting}
[0, [0, nvars, deg, vars, form, [1,[lw, lwp, param]]]]:
\end{lstlisting}
\end{tcolorbox}
where
\begin{itemize}
\item the first $0$ indicates that the input system has finitely
many complex solutions (dimension at most $0$);
\item the second $0$ is the characteristic;
\item \verb+nvars+ is the number of variables used for the parametrization (it
coincides with the number of input variables if the form $\ell$ is chosen
as one of the variables else it is one more);
\item \verb+deg+ is the number of solutions, \emph{counted with multiplicities}
(in other words the degree of the ideal generated by the input equations);
\item \verb+vars+ is the list of variables following the ordering used for
computing the parametrization (hence, with maybe with one
more variable than the ones given as input).
In our example, \msolve outputs:
\begin{verbatim}
['z1', 'z2', 'A']
\end{verbatim}
where \verb+A+ is a new variable.
\item \texttt{form} is the list of coefficients for the linear form $\ell$ when
it does not coincide with one of the input variables (else it is an empty list);
In our example, this is a list of three rational numbers,
say \verb+[-119/576,69/576,5/576]+,
indicating that the linear form used to compute the rational parametrization is
\begin{verbatim}
-119/576*z1+69/576*z2+5/576*A
\end{verbatim}
\item the next $1$ indicates that a single parametrization is returned next (the one encoded by \verb+[lw, lwp, param]+);
\item \verb+lw+ is the encoding of the eliminating polynomial $w$;
\item \verb+lwp+ is the encoding of the denominator used in the rational
parametrization;
\item \verb+param+ is the list of the output parametrizations, there are $n-1$ where
$n$ is the number of elements in \verb+vars+ ;
they are encoded as follows \verb+[[deg, L], c]+ where \verb+c+ is
an integer which divides the polynomial encoded by \verb+[deg, L]+.
The first one corresponds to the first variable in \verb+vars+, the
second parametrization corresponds to the second variable in \verb+vars+
and so on. Hence, the variable which is used to parametrize the solution
set is always the last one.
\end{itemize}
We illustrate now how the output looks like on input file \verb+in.ms+
\msolveinput{examples/param_char0.ms}
Using \verb+./msolve -P 2 -f in.ms+ the output is
\begin{tcolorbox} % examples/param_char0.res
\begin{lstlisting}
[0, [0,
3,
4,
['z1', 'z2', 'z3'],
[0, 0, 1],
[1,
[[4, [-116, -210, 1484, -344, 53]],
[3, [-210, 2968, -1032, 212]],
[
[[3, [1894, 162, -1636, 192]],
1],
[[3, [-146, -620, -3118, 314]],
1]
]]]]]:
\end{lstlisting}
\end{tcolorbox}
On this example, all variables are parametrized by the variable \verb+z3+.
The polynomial $w$ is $-116 - 210 z_3 + 1484 z_3^2 -344 z_3^3 + 53 z_3^4$.
The polynomials $v_1$ and $v_2$ are respectively
\[
v_1 = 1894 + 162 z_3 - 1636 z_3^2 + 192 z_3^3 \quad \text{ and }
\quad v_2 = -146 -620 z_3 - 3118 z_3^2 + 314 z_3^3.
\]
Note that we can get both the parametrization and the real roots.
For instance, using the command
\verb+./msolve -P 1 -f in.ms+, one obtains
\begin{tcolorbox} % example/param_and__reals_char0.res
\begin{lstlisting}
[0, [0,
3,
4,
['z1', 'z2', 'z3'],
[0, 0, 1],
[1,
[[4, [-116, -210, 1484, -344, 53]],
[3, [-210, 2968, -1032, 212]],
[
[[3, [1894, 162, -1636, 192]],
1],
[[3, [-146, -620, -3118, 314]],
1]
]]]],[1,
[[[679375673646273705027530285330331715009 / 2^128, 339687836823136852513765142665165857505 / 2^127], [-60535166785954698124918883091179878673 / 2^128, -3783447924122168632807430193198742417 / 2^124], [-1162789190151604508343028862486419979779 / 2^132, -581394595075802254171514431243209989889 / 2^131]], [[-756665306660103909967296571629791504137 / 2^128, -756665306660103909967296571629791504135 / 2^128], [88745898258177294078528671940999802399 / 2^126, 177491796516354588157057343881999604799 / 2^127], [2063895933416661444279689618845660247455 / 2^132, 4127791866833322888559379237691320494911 / 2^133]]]
]]:
\end{lstlisting}
\end{tcolorbox}
We end this section with the same example as above but seeing the coefficients in
\(\Z/65521\Z\).
\msolveinput{examples/param_char65521.ms}
The call \verb+./msolve -P 2 -f in.ms+ then outputs
\begin{tcolorbox} % examples/param_char65521.res
\begin{lstlisting}
[0, [65521,
3,
4,
['z1', 'z2', 'z3'],
[0, 0, 1],
[1,
[[4,
[16069, 9886, 28, 2466, 1]],
[0,
[1]],
[
[[3,
[6276, 37054, 57744, 4959]]],
[[3,
[29622, 14235, 36649, 30281]]]
]]]]]:
\end{lstlisting}
\end{tcolorbox}
\section{Saturation and colon ideals}\label{sec:f4sat}
\msolve also proposes algorithms for computing Gr\"obner bases of
saturation and colon ideals. Given $m+1$ polynomials
$f_1,\ldots,f_m,\varphi$ over a field $\K$ with variables
$x_1,\ldots,x_n$,
the saturation ideal
$\langle f_1,\ldots,f_m\rangle:\langle \varphi\rangle^{\infty}$ is the ideal of all
polynomials $h$, such that there exists $k\in\N$ such that
$h \varphi^k\in\langle f_1,\ldots,f_m\rangle$.
The colon ideal
$\langle f_1,\ldots,f_m\rangle:\langle \varphi\rangle$ is the ideal of all
polynomials $h$, such that
$h \varphi\in\langle f_1,\ldots,f_m\rangle$.
A Gr\"obner basis for the \emph{grevlex order} can be computed in the
former case with an input file containg $f_1,\ldots,f_m,\varphi$ and
called with the flag \verb+-S+ to use the F4SAT algorithm. Note that this option
is at the moment restricted to 32 bit prime fields.
For instance, consider the following input to \msolve written in a file
\verb+in.ms+.
\msolveinput{examples/saturate_char1073741827.ms}
Then, typing the following command line
\begin{tcolorbox} % examples/saturate_char1073741827.sh
\begin{verbatim}
./msolve -S -g 2 -f in.ms -o out.ms
\end{verbatim}
\end{tcolorbox}
will display in the \verb+out.ms+ file the following content.
\begin{tcolorbox}
\begin{lstlisting}
#Reduced Groebner basis data
#---
#field characteristic: 1073741827
#variable order: w, x, y, z
#monomial order: graded reverse lexicographical
#length of basis: 6 elements sorted by increasing leading monomials
#---
[1*w^1*y^3+1073741826*x^1*z^3,
1*x^4,
1*w^1*x^3,
1*w^2*x^2,
1*w^3*x^1,
1*w^4]:
\end{lstlisting}
\end{tcolorbox}
% \section{Preliminaries}
% Polynomial systems arise in a wide range of applications in engineering and
% computing sciences. What it means to ``solve'' a polynomial system mainly
% depends on the application, the \emph{domain} where the coefficients lie and the
% properties of the solution set.
% For instance, in many applications of engineering sciences, the coefficients lie
% in the \emph{field} of rational numbers $\Q$. Sometimes, these coefficients
% appear as \emph{floating point} numbers but since floating point arithmetics is
% not fully convenient to handle reliably non-linear systems, the end-user may
% coerce these coefficients into rational numbers. There, using continued
% fractions is quite useful as it allows one to obtain reliable approximations
% with integers of small \emph{height} (hence small length when represented with
% bits).
% All in all, one ends up with polynomial equations in the polynomial ring
% $\Q[x_1, \ldots, x_n]$, i.e. the set of polynomials with coefficients in $\Q$
% and involving indeterminates $x_1, \ldots, x_n$.
% In such applications, the end-user will most of the time expect informations on
% the solutions with coordinates in the field of real numbers $\R$ (for instance
% in robotics or biology) or in the field of complex numbers $\C$ (for instance in
% signal theory).
% When the number of solutions of such systems in $\C^n$ is finite (one says that
% such systems have dimension at most zero), then it is well-known that the
% coordinates of the solutions can be parametrized by an \emph{algebraic number}
% at which one evaluates a rational fraction. In other words, there exist
% univariate polynomials $(w, v_1, \ldots, v_n)$ in $\Q[t]$ such that $w$ is
% square-free and the solution set in $\C^n$ can be written as
% \[
% \left \{
% \left (\frac{v_1(\vartheta)}{w'(\vartheta)}, \ldots,
% \frac{v_n(\vartheta)}{w'(\vartheta)}\right ) \quad \st \quad w(\vartheta) = 0
% \right \}
% \]
% where
% $w'=\frac{\ud w}{\ud t}$.
% % $w'=\frac{\partial w}{\partial t}$.
% Note that, with such an encoding
% (which is called a rational parametrization of the solution set), one can
% approximate at arbitrary precision the solutions of the input system (by isolating
% the ones of the univariate polynomial $w$).
% Note also that, since $w$ is square-free, $w$ and $w'$ are co-prime and the
% denominator in the above parametrization can be replaced by a constant.
% Remark that the total number of solutions in $\C^n$ equals the degree of $w$.
% Hence, when the input system has no complex solution, $w$ is a non-zero
% constant. Also, the number of real roots to the input system is the number of
% real roots of $w$.
% Note also that this encoding loses the number of solutions counted with
% \emph{multiplicities} ; this number is called the \emph{degree} of the input
% system (which always dominates the number of complex solutions).
% For systems in $\Q[x_1, \ldots, x_n]$, \msolve~is able to decide if they have
% finitely many complex solutions and, in that case, returns a rational
% parametrization of the solution set in $\C^n$. It also counts and isolates the
% real roots of the polynomial $w$. We refer to Section~\ref{sec:zerodim} for
% details on how \msolve~encodes such outputs.
% When the input system has infinitely many complex solutions, \msolve~can output
% a \emph{Gr\"obner basis} of the \emph{ideal} generated by all input polynomials
% ; this is a family of polynomials which is obtained by taking appropriate
% algebraic combinations of the input polynomials and from which one can extract
% several properties of the solution set, in particular its \emph{dimension} and
% its \emph{degree} (see Section~\ref{sec:posdim}).
% For applications in cryptology and/or coding theory, polynomial systems lie in
% some polynomial ring $\bF[x_1, \ldots, x_n]$ where $\bF$ is some finite field. In
% that situation, \msolve~only supports prime field $\frac{\Z}{p\Z}$ with $p <
% 2^{31}$. Denoting by $\overline{\bF}$ an algebraic closure of $\bF$, such systems
% have dimension at most $0$ when they have finitely many solutions in
% $\overline{\bF}^n$, else they have positive dimension. For systems of dimension
% at most zero, a rational parametrization as above can be computed when the
% characteristic of the field is large enough.
% \section{Solving polynomial systems of dimension at most zero}\label{sec:zerodim}
% Let $\K$ be a field and $\overline{\K}$ be an algebraic closure of $\K$. We
% consider polynomials $(f_1, \ldots, f_s)$ in $\K[x_1, \ldots,
% x_n]$ and $V$ be the set of solutions to the system
% \[
% f_1=\cdots=f_s=0
% \]
% in $\overline{\K}^n$.
% When $V$ is
% empty,
% % in $\overline{\K}[x_1, \ldots, x_n]$,
% the
% output of \msolve~is
% \begin{verbatim}
% [1, []]
% \end{verbatim}
% When $V$ is finite, say $V$ is the union of the $\ell$ points $\balpha_1,
% \ldots, \balpha_\ell$ in $\overline{\K}^n$ with $\balpha_i = (\alpha_{i,1},
% \ldots, \alpha_{i,n})$,
% % When the input system has finitely many solutions in
% % $\overline{\K}^n$,
% the
% output is encoded as follows:
% % \begin{verbatim}
% % [dim, [deg, nbsols, form, vars, [lw, lwp, param]]]
% % \end{verbatim}
% % where
% % \begin{itemize}
% % \item \texttt{dim} is $0$ (which indicates that the input system has finitely
% % many solutions);
% % \item \texttt{deg} is the number of solutions counted with multiplicities in
% % $\overline{\K}^n$;
% % \item \texttt{nbsols} is the number of solutions in $\overline{\K}^n$;
% % \item \texttt{form} is the linear form $t$;
% % \item \texttt{vars} is the list of the variables which are parametrized;
% % \item \texttt{lw} is the encoding of the eliminating polynomial $w$;
% % \item \texttt{lwp} is the encoding of the denominator used in the rational
% % parametrization;
% % \item \texttt{param} is the list of the output parametrizations as described
% % above ; the $i$th one corresponds to the $i$th element of \texttt{vars}.
% % % \textcolor{magenta}{I am not sure this is still the case, maybe I used a reverse
% % % ordering.}
% % \end{itemize}
% \begin{verbatim}
% [dim, nbvar, deg, varstr, linform, lw, lwp, param]
% \end{verbatim}
% in characteristic $0$, where
% \begin{itemize}
% \item \texttt{dim} is $0$ (which indicates that the input system has finitely
% many solutions);
% \item \texttt{nbvar} is the number of variables;
% \item \texttt{deg} is the number of solutions counted with multiplicities in
% $\overline{\K}^n$;
% % \item \texttt{nbsols} is the number of solutions in $\overline{\K}^n$;
% \item \texttt{varstr} is the list of the variables which are parametrized;
% \item \texttt{linform} is the linear form $t$, it is empty if there is none;
% \item \texttt{lw} is the encoding of the eliminating polynomial $w$
% either in $t$ or the last variable of \texttt{varstr};
% \item \texttt{lwp} is the encoding of the denominator used in the rational
% parametrization;
% \item \texttt{param} is the list of the output parametrizations as described
% above ; the $i$th one corresponds to the $i$th element of \texttt{varstr}.
% % \textcolor{magenta}{I am not sure this is still the case, maybe I used a reverse
% % ordering.}
% \end{itemize}
% \begin{verbatim}
% [char, nbvar, elim, den, param]
% \end{verbatim}
% in positive characteristic, where
% \begin{itemize}
% \item \texttt{char} is the characteristic of the field;
% % \item \texttt{dim} is $0$ (which indicates that the input system has finitely
% % many solutions);
% \item \texttt{nbvar} is the number of variables;
% \item \texttt{elim} is the encoding of the eliminating polynomial of
% the last variable;
% \item \texttt{den} is the encoding of the denominator used in the rational
% parametrization, it is always $1$ at the moment;
% \item \texttt{param} is the list of the output parametrizations as described
% above ; the $i$th one corresponds to the $i$th element of \texttt{vars}.
% % \textcolor{magenta}{I am not sure this is still the case, maybe I used a reverse
% % ordering.}
% \end{itemize}
% %\textcolor{magenta}{Here we should give (small) examples.}
% \section{Solving polynomial systems of positive dimension}\label{sec:posdim}
\section{More flags and options}\label{sec:flags}
\begin{itemize}
\item The flag \verb+-h+ displays some documentation
\item The flag \verb+-v <int>+ controls the verbosity
\hfill \verb+Default value: 0+
\item The flag \verb+-t <int>+ controls the number of threads used
\hfill \verb+Default value: 1+
\item The flag \verb+-p <int>+ controls the binary precision of the output of the
univariate real root
solver (default value may be automatically increased by \msolve when needed).
\hfill \verb+Default value:128+
\item The flag \verb+-g <int>+ tells \msolve to output the leading monomial of
the ideal generated by the input polynomials (when \verb+<int>+ is \verb+1+)
or the minimal reduced Gr\"obner basis (when \verb+<int>+ is \verb+2+ and
a prime characteristic is indicated).
\hfill \verb+Default value:0+
\item The flag \verb+-P <int>+ tells \msolve to output the
rational parametrization computed for solving zero-dimensional polynomial
systems (those with finitely many solutions in an algebraic closure of the base field).
When +\verb+-P 0+ is set, such a parametrization is not returned, when \verb+-P 1+ is
set, the parametrization is returned and, in the charactersitic zero case (rational
coefficients), real solutions are returned, when +\verb+-P 2+ is set, only the
rational parametrization is returned.
\hfill \verb+Default value:0+
\item The flag \verb+-c <int>+ tells \msolve how to handle genericity
requirements: when \verb+<int>+ is \verb+0+ \msolve quits when these
requirements are not satisfied, when \verb+<int>+ is \verb+1+ \msolve is
allowed to change the order of the variables if needed and quits if after
these changes, the genericity requirements are not satisfied, when
\verb+<int>+ is \verb+2+ \msolve is allowed to introduce a new variable and a
linear form until the genericity requirements are satisfied.
\hfill \verb+Default value:2+
\item The flag \verb+-d <int>+ tells \msolve how to handle further genericity
requirements when the staircase is not generic enough by computing some normal forms:
\verb+<int>+ can go from \verb+0+ (no normal form computations are computed) to
\verb+4+ (all the normal forms are computed).
\hfill \verb+Default value:2+
\end{itemize}
\section{Julia interface to \msolve}
The Julia interface to \msolve is part of the official Julia package
\texttt{Oscar.jl}. You can install the package via the following
commands inside a Julia session:\\[1em]
\texttt{using Pkg\\
Pkg.add(“Oscar”)}\\[1em]
Once the package is loaded via \texttt{using Oscar} one can call the function
\texttt{msolve()} which returns, if any, the rational parametrization and the solutions of the given input
system of multivariate polynomials. The most common calling convention is as follows:\\[1em]
\texttt{res = msolve(I)}.\\[1em]
where
\begin{itemize}
\item \texttt{I} is of type \texttt{ideal}.
\end{itemize}
The most common options for calling \texttt{msolve()} in Julia are:
\begin{itemize}
\item \texttt{info\_level} with values \texttt{0} (no information printing;
default), \texttt{1} (slight information printing on comptutational
status) or \texttt{2} (full information printing also on intermediate
steps),
\item \texttt{la\_option} for the linear algebra variant to be chosen inside
F4: \texttt{2} for exact linear algebra and tracing multi modular
computations (default) or \texttt{44} for probabilistic linear algebra
with independent modular computations;
\item \texttt{precision} for the bit precision with which the solutions are
computed from the rational parametrization. Default is \texttt{64}.
\end{itemize}
So using \texttt{msolve()} with probabilistic linear algebra, the most verbose
information printout and a precision of $80$ one would call\\[1em]
\texttt{res = msolve(I, la\_option=44, info\_level=2,
precision=80)}.\\[1em]
You can get a full list of options for \texttt{msolve()} in Julia by typing
inside Julia\\[1em]
\texttt{? msolve()}
\section{Maple interface to \msolve}
The Maple interface to \msolve is a file interface which can be found on the
\msolve \href{https://msolve.lip6.fr/interfaces/index.html}{interface
page} or in the \msolve binary package. Having loaded the interface
one can call the function
\texttt{MSolveRealRoots()} in the following way:\\[1em]
\texttt{results = MSolveRealRoots(F, vars)}\\[1em]
where \texttt{F} denotes a polynomial system in variables \texttt{vars},
In order to compute Gr\"obner bases, you can also the function
\texttt{MSolveGroebner}.
You may consult the source code for optional arguments which allow you to better
control the output format, the names of used files, verbosity, etc.
\section{Sage interface to \msolve}
There is now an interface between \href{https://www.sagemath.org/}{SageMath}
and \msolve.
You can have a look at
\url{https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/msolve.py}
and
\url{https://github.com/sagemath/sage/blob/develop/src/sage/rings/polynomial/multi_polynomial_ideal.py}
\hfill Many thanks to the SageMath development team, in particular to Marc
Mezzarobba who initiated this interface.
%The Sage interface to \msolve can be found on the \msolve homepage or in the
%\msolve binary package. Starting
%Sage we load the interface:\\[1em]
%\texttt{load(“msolve-to-sage-file-interface.sage”)}.\\[1em]
%Defining a multivariate polynomial ring \texttt{R} and a list \texttt{F} of
%polynomials in \texttt{R} one can solve the multivariate polynomial system
%defined by \texttt{F} via calling\\[1em]
%\texttt{results = MSolveRealRoots(}\\
%\texttt{F, mspath=“/path/to/msolve/binary”,
%v=verbosity, p=get\_parametrization)}\\[1em]
%Parameter \texttt{mspath} states the path to the msolve binary (default is
%\texttt{“../binary/msolve”}).
%The verbosity level can be set to \texttt{0} (no information printing; default),
%\texttt{1} (slight information printing on computational status) or \texttt{2}
%(full information printing also on intermediate steps).
%The \texttt{p} parameter can be set to \texttt{0} (rational parametrization of
%solution set is not returned) or \texttt{1} (returns also the rational
%parametrization of the solution set). Depending on parameter \texttt{p}
%\texttt{results} consists only of the solutions or it is an array consisting of
%the rational parametrization as first entry and the solutions as second entry.
\section{Credits}
The main developers of \msolve~are J\'er\'emy Berthomieu, Christian Eder and
Mohab Safey El Din. It relies on original implementations of Faugère's \Fquatre
algorithm~\cite{F4} as well as Faug\`ere and Mou's Sparse-FGLM
algorithm~\cite{SparseFGLM}. We are grateful to Huu Phuoc Le and Jorge
García Fontán for a
preliminary version of the Maple interface as well as Rémi Prébet for a
preliminary version of the Sage interface.
If you use \msolve, you may cite:
\begin{verbatim}
@inproceedings{msolve,
TITLE = {{msolve: A Library for Solving Polynomial Systems}},
AUTHOR = {Berthomieu, J{\'e}r{\'e}my and Eder, Christian and {Safey El Din}, Mohab},
URL = {https://hal.sorbonne-universite.fr/hal-03191666},
BOOKTITLE = {{2021 International Symposium on Symbolic and Algebraic Computation}},
ADDRESS = {Saint Petersburg, Russia},
SERIES = {46th International Symposium on Symbolic and Algebraic Computation},
YEAR = {2021},
MONTH = Jul,
DOI = {10.1145/3452143.3465545},
PDF = {https://hal.sorbonne-universite.fr/hal-03191666v2/file/main.pdf},
HAL_ID = {hal-03191666},
HAL_VERSION = {v2},
}
\end{verbatim}
\renewcommand*{\bibfont}{\small}
\printbibliography
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End:
|