1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
|
/* MSPDebug - debugging tool for the eZ430
* Copyright (C) 2009-2012 Daniel Beer
* Copyright (C) 2012 Stanimir Bonev
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Various constants and tables come from uif430, written by Robert
* Kavaler (kavaler@diva.com). This is available under the same license
* as this program, from www.relavak.com.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>
#include "util.h"
#include "fet.h"
#include "fet_core.h"
#include "fet_error.h"
#include "fet_proto.h"
#include "fet_db.h"
#include "output.h"
#include "opdb.h"
#include "ctrlc.h"
#include "fet_olimex_db.h"
#include "devicelist.h"
struct fet_device {
struct device base;
int version;
int fet_flags;
int poll_enable;
struct fet_proto proto;
fperm_t active_fperm;
};
/**********************************************************************
* FET command codes.
*
* These come from uif430 by Robert Kavaler (kavaler@diva.com).
* www.relavak.com
*/
#define C_INITIALIZE 0x01
#define C_CLOSE 0x02
#define C_IDENTIFY 0x03
#define C_DEVICE 0x04
#define C_CONFIGURE 0x05
#define C_VCC 0x06
#define C_RESET 0x07
#define C_READREGISTERS 0x08
#define C_WRITEREGISTERS 0x09
#define C_READREGISTER 0x0a
#define C_WRITEREGISTER 0x0b
#define C_ERASE 0x0c
#define C_READMEMORY 0x0d
#define C_WRITEMEMORY 0x0e
#define C_FASTFLASHER 0x0f
#define C_BREAKPOINT 0x10
#define C_RUN 0x11
#define C_STATE 0x12
#define C_SECURE 0x13
#define C_VERIFYMEMORY 0x14
#define C_FASTVERIFYMEMORY 0x15
#define C_ERASECHECK 0x16
#define C_EEMOPEN 0x17
#define C_EEMREADREGISTER 0x18
#define C_EEMREADREGISTERTEST 0x19
#define C_EEMWRITEREGISTER 0x1a
#define C_EEMCLOSE 0x1b
#define C_ERRORNUMBER 0x1c
#define C_GETCURVCCT 0x1d
#define C_GETEXTVOLTAGE 0x1e
#define C_FETSELFTEST 0x1f
#define C_FETSETSIGNALS 0x20
#define C_FETRESET 0x21
#define C_READI2C 0x22
#define C_WRITEI2C 0x23
#define C_ENTERBOOTLOADER 0x24
#define C_IDENT1 0x28
#define C_IDENT2 0x29
#define C_IDENT3 0x2b
#define C_CMM_PARAM 0x36
#define C_CMM_CTRL 0x37
#define C_CMM_READ 0x38
/* Constants for parameters of various FET commands */
#define FET_CONFIG_VERIFICATION 0
#define FET_CONFIG_EMULATION 1
#define FET_CONFIG_CLKCTRL 2
#define FET_CONFIG_MCLKCTRL 3
#define FET_CONFIG_FLASH_TESET 4
#define FET_CONFIG_FLASH_LOCK 5
#define FET_CONFIG_PROTOCOL 8
#define FET_CONFIG_UNLOCK_BSL 11
#define FET_RUN_FREE 1
#define FET_RUN_STEP 2
#define FET_RUN_BREAKPOINT 3
#define FET_RESET_PUC 0x01
#define FET_RESET_RST 0x02
#define FET_RESET_VCC 0x04
#define FET_RESET_ALL 0x07
#define FET_ERASE_SEGMENT 0
#define FET_ERASE_MAIN 1
#define FET_ERASE_ALL 2
#define FET_POLL_RUNNING 0x01
#define FET_POLL_BREAKPOINT 0x02
/**********************************************************************
* MSP430 high-level control functions
*/
static void show_dev_info(const char *name, const struct fet_device *dev)
{
printc_dbg("Device: %s\n", name);
printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints);
}
static int identify_old(struct fet_device *dev)
{
char idtext[64];
if (fet_proto_xfer(&dev->proto, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
return -1;
if (dev->proto.datalen < 0x26) {
printc_err("fet: missing info\n");
return -1;
}
memcpy(idtext, dev->proto.data + 4, 32);
idtext[32] = 0;
dev->base.max_breakpoints = LE_WORD(dev->proto.data, 0x2a);
show_dev_info(idtext, dev);
return 0;
}
static int identify_new(struct fet_device *dev, const char *force_id)
{
const struct fet_db_record *r;
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 2, 0, 0) < 0) {
printc_err("fet: command C_IDENT1 failed\n");
return -1;
}
if (dev->proto.datalen < 2) {
printc_err("fet: missing info\n");
return -1;
}
printc_dbg("Device ID: 0x%02x%02x\n",
dev->proto.data[0], dev->proto.data[1]);
if (force_id)
r = fet_db_find_by_name(force_id);
else
r = fet_db_find_by_msg28(dev->proto.data,
dev->proto.datalen);
if (!r) {
printc_err("fet: unknown device\n");
debug_hexdump("msg28_data:", dev->proto.data,
dev->proto.datalen);
return -1;
}
dev->base.max_breakpoints = r->msg29_data[0x14];
printc_dbg(" Code start address: 0x%x\n",
LE_WORD(r->msg29_data, 0));
/*
* The value at 0x02 seems to contain a "virtual code end
* address". So this value seems to be useful only for
* calculating the total ROM size.
*
* For example, as for the msp430f6736 with 128kb ROM, the ROM
* is split into two areas: A "near" ROM, and a "far ROM".
*/
const uint32_t codeSize =
LE_LONG(r->msg29_data, 0x02)
- LE_WORD(r->msg29_data, 0)
+ 1;
printc_dbg(" Code size : %u byte = %u kb\n",
codeSize,
codeSize / 1024);
printc_dbg(" RAM start address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0c));
printc_dbg(" RAM end address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0e));
const uint16_t ramSize =
LE_WORD(r->msg29_data, 0x0e)
- LE_WORD(r->msg29_data, 0x0c)
+ 1;
printc_dbg(" RAM size : %u byte = %u kb\n",
ramSize,
ramSize / 1024);
show_dev_info(r->name, dev);
if (fet_proto_xfer(&dev->proto, C_IDENT3,
r->msg2b_data, r->msg2b_len, 0) < 0)
printc_err("fet: warning: message C_IDENT3 failed\n");
if (fet_proto_xfer(&dev->proto, C_IDENT2,
r->msg29_data, FET_DB_MSG29_LEN,
3, r->msg29_params[0], r->msg29_params[1],
r->msg29_params[2]) < 0) {
printc_err("fet: message C_IDENT2 failed\n");
return -1;
}
return 0;
}
static int identify_olimex(struct fet_device *dev, const char *force_id)
{
const struct fet_olimex_db_record *r;
int db_indx;
devicetype_t set_id = DT_UNKNOWN_DEVICE;
devicetype_t dev_id = DT_UNKNOWN_DEVICE;
uint8_t jtag_id;
printc_dbg("Using Olimex identification procedure\n");
if (force_id) {
db_indx = fet_olimex_db_find_by_name(force_id);
if (db_indx < 0) {
printc_err("fet: no such device: %s\n", force_id);
return -1;
}
dev_id = set_id = fet_olimex_db_index_to_type(db_indx);
}
/* first try */
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
set_id, set_id, 0) < 0 &&
(4 != dev->proto.error)) /* No device error */
{
printc_err("fet: command C_IDENT1 failed\n");
return -1;
}
if (dev->proto.datalen < 19) {
printc_err("fet: missing info\n");
return -1;
}
jtag_id = dev->proto.data[18];
/* find device in data base */
if (DT_UNKNOWN_DEVICE == dev_id) {
db_indx = fet_olimex_db_identify(dev->proto.data);
dev_id = fet_olimex_db_index_to_type(db_indx);
}
if ((DT_UNKNOWN_DEVICE == dev_id && 0x91 == jtag_id) ||
(4 == dev->proto.error)) {
/* second try with magic pattern */
if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
set_id, dev_id, 0) < 0) {
printc_err("fet: command C_IDENT1 with "
"magic patern failed\n");
return -1;
}
db_indx = fet_olimex_db_identify(dev->proto.data);
dev_id = fet_olimex_db_index_to_type(db_indx);
}
printc_dbg("Device ID: 0x%02x%02x\n",
dev->proto.data[0], dev->proto.data[1]);
if (DT_UNKNOWN_DEVICE == dev_id) {
printc_err("fet: can't find device in DB\n");
return -1;
}
r = fet_db_get_record(dev_id);
dev->base.max_breakpoints = r->msg29_data[0x14];
printc_dbg(" Code start address: 0x%x\n",
LE_WORD(r->msg29_data, 0));
/*
* The value at 0x02 seems to contain a "virtual code end
* address". So this value seems to be useful only for
* calculating the total ROM size.
*
* For example, as for the msp430f6736 with 128kb ROM, the ROM
* is split into two areas: A "near" ROM, and a "far ROM".
*/
const uint32_t codeSize =
LE_LONG(r->msg29_data, 0x02)
- LE_WORD(r->msg29_data, 0)
+ 1;
printc_dbg(" Code size : %u byte = %u kb\n",
codeSize,
codeSize / 1024);
printc_dbg(" RAM start address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0c));
printc_dbg(" RAM end address: 0x%x\n",
LE_WORD(r->msg29_data, 0x0e));
const uint16_t ramSize =
LE_WORD(r->msg29_data, 0x0e)
- LE_WORD(r->msg29_data, 0x0c)
+ 1;
printc_dbg(" RAM size : %u byte = %u kb\n",
ramSize, ramSize / 1024);
show_dev_info(r->name, dev);
if (fet_proto_xfer(&dev->proto, C_IDENT3,
r->msg2b_data, r->msg2b_len, 0) < 0)
printc_err("fet: warning: message C_IDENT3 failed\n");
if (fet_proto_xfer(&dev->proto, C_IDENT2,
r->msg29_data, FET_DB_MSG29_LEN,
3, r->msg29_params[0], r->msg29_params[1],
r->msg29_params[2]) < 0) {
printc_err("fet: message C_IDENT2 failed\n");
return -1;
}
return 0;
}
static int is_new_olimex(const struct fet_device *dev)
{
if ((&device_olimex_iso_mk2 == dev->base.type) &&
(20000004 <= dev->version))
return 1;
if (((&device_olimex == dev->base.type) ||
(&device_olimex_v1 == dev->base.type) ||
(&device_olimex_iso == dev->base.type)) &&
(10004003 <= dev->version))
return 1;
return 0;
}
static int try_new(struct fet_device *dev, const char *force_id)
{
if (!identify_new(dev, force_id))
return 0;
return identify_olimex(dev, force_id);
}
static int do_identify(struct fet_device *dev, const char *force_id)
{
if (is_new_olimex(dev))
return identify_olimex(dev, force_id);
if (dev->fet_flags & FET_IDENTIFY_NEW)
return try_new(dev, force_id);
if (dev->version < 20300000)
return identify_old(dev);
return try_new(dev, force_id);
}
static void power_init(struct fet_device *dev)
{
if (fet_proto_xfer(&dev->proto, C_CMM_PARAM, NULL, 0, 0) < 0) {
printc_err("warning: device does not support power "
"profiling\n");
return;
}
if (dev->proto.argv[0] <= 0 || dev->proto.argv[0] <= 0) {
printc_err("Bad parameters returned by C_CMM_PARAM: "
"bufsize = %d bytes, %d us/sample\n",
dev->proto.argv[1], dev->proto.argv[0]);
return;
}
printc("Power profiling enabled: bufsize = %d bytes, %d us/sample\n",
dev->proto.argv[1], dev->proto.argv[0]);
printc_shell("power-sample-us %d\n", dev->proto.argv[0]);
dev->base.power_buf = powerbuf_new(POWERBUF_DEFAULT_SAMPLES,
dev->proto.argv[0]);
if (!dev->base.power_buf) {
printc_err("Failed to allocate memory for power profile\n");
return;
}
}
static int power_start(struct fet_device *dev)
{
if (!dev->base.power_buf)
return 0;
if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to start power profiling, "
"disabling\n");
powerbuf_free(dev->base.power_buf);
dev->base.power_buf = NULL;
return -1;
}
powerbuf_begin_session(dev->base.power_buf, time(NULL));
dev->poll_enable = 1;
return 0;
}
static int power_end(struct fet_device *dev)
{
if (!dev->base.power_buf)
return 0;
powerbuf_end_session(dev->base.power_buf);
dev->poll_enable = 0;
if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to end power profiling\n");
return -1;
}
return 0;
}
static void shell_power(const uint8_t *data, int len)
{
while (len > 0) {
int plen = 128;
char text[256];
if (plen > len)
plen = len;
base64_encode(data, plen, text, sizeof(text));
printc_shell("power-samples %s\n", text);
len -= plen;
data += plen;
}
}
static int power_poll(struct fet_device *dev)
{
address_t mab;
address_t mab_samples[1024];
unsigned int cur_samples[1024];
unsigned int count = 0;
int i;
if (!dev->base.power_buf || !dev->poll_enable)
return 0;
if (fet_proto_xfer(&dev->proto, C_CMM_READ, NULL, 0, 0) < 0) {
printc_err("fet: failed to fetch power data, disabling\n");
power_end(dev);
powerbuf_free(dev->base.power_buf);
dev->base.power_buf = NULL;
dev->poll_enable = 0;
return -1;
}
shell_power(dev->proto.data, dev->proto.datalen);
mab = powerbuf_last_mab(dev->base.power_buf);
for (i = 0; i + 3 < dev->proto.datalen; i += 4) {
uint32_t s = LE_LONG(dev->proto.data, i);
if (s & 0x80000000) {
mab = s & 0x7fffffff;
} else if (count + 1 < ARRAY_LEN(cur_samples)) {
cur_samples[count] = s;
mab_samples[count] = mab;
count++;
}
}
powerbuf_add_samples(dev->base.power_buf, count,
cur_samples, mab_samples);
return 0;
}
static int refresh_fperm(struct fet_device *dev)
{
fperm_t fp = opdb_read_fperm();
fperm_t delta = dev->active_fperm ^ fp;
if (delta & FPERM_LOCKED_FLASH) {
int opt = (fp & FPERM_LOCKED_FLASH) ? 1 : 0;
printc_dbg("%s locked flash access\n",
opt ? "Enabling" : "Disabling");
if (fet_proto_xfer(&dev->proto,
C_CONFIGURE, NULL, 0,
2, FET_CONFIG_FLASH_LOCK, opt) < 0) {
printc_err("fet: FET_CONFIG_FLASH_LOCK failed\n");
return -1;
}
}
if (delta & FPERM_BSL) {
int opt = (fp & FPERM_BSL) ? 1 : 0;
printc_dbg("%s BSL access\n",
opt ? "Enabling" : "Disabling");
if (fet_proto_xfer(&dev->proto,
C_CONFIGURE, NULL, 0,
2, FET_CONFIG_UNLOCK_BSL, opt) < 0) {
printc_err("fet: FET_CONFIG_UNLOCK_BSL failed\n");
return -1;
}
}
dev->active_fperm = fp;
return 0;
}
static int do_run(struct fet_device *dev, int type)
{
if (fet_proto_xfer(&dev->proto, C_RUN, NULL, 0, 2, type, 0) < 0) {
printc_err("fet: failed to restart CPU\n");
return -1;
}
return 0;
}
int fet_erase(device_t dev_base, device_erase_type_t type, address_t addr)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int fet_erase_type = FET_ERASE_MAIN;
if (fet_proto_xfer(&dev->proto,
C_CONFIGURE, NULL, 0,
2, FET_CONFIG_CLKCTRL, 0x26) < 0) {
printc_err("fet: config (1) failed\n");
return -1;
}
refresh_fperm(dev);
switch (type) {
case DEVICE_ERASE_MAIN:
fet_erase_type = FET_ERASE_MAIN;
addr = 0xfffe;
break;
case DEVICE_ERASE_SEGMENT:
fet_erase_type = FET_ERASE_SEGMENT;
break;
case DEVICE_ERASE_ALL:
fet_erase_type = FET_ERASE_ALL;
addr = 0xfffe;
break;
default:
printc_err("fet: unsupported erase type\n");
return -1;
}
if (fet_proto_xfer(&dev->proto, C_ERASE, NULL, 0,
3, fet_erase_type, addr, 1) < 0) {
printc_err("fet: erase command failed\n");
return -1;
}
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
3, FET_RESET_ALL, 0, 0) < 0) {
printc_err("fet: reset failed\n");
return -1;
}
return 0;
}
device_status_t fet_poll(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 0) < 0) {
printc_err("fet: polling failed\n");
power_end(dev);
return DEVICE_STATUS_ERROR;
}
if (dev->base.power_buf)
power_poll(dev);
else
delay_ms(50);
if (!(dev->proto.argv[0] & FET_POLL_RUNNING)) {
power_end(dev);
return DEVICE_STATUS_HALTED;
}
if (ctrlc_check())
return DEVICE_STATUS_INTR;
return DEVICE_STATUS_RUNNING;
}
static int refresh_bps(struct fet_device *dev)
{
int i;
int ret = 0;
for (i = 0; i < dev->base.max_breakpoints; i++) {
struct device_breakpoint *bp = &dev->base.breakpoints[i];
if ((bp->flags & DEVICE_BP_DIRTY) &&
bp->type == DEVICE_BPTYPE_BREAK) {
uint16_t addr = bp->addr;
if (!(bp->flags & DEVICE_BP_ENABLED))
addr = 0;
if (fet_proto_xfer(&dev->proto, C_BREAKPOINT, NULL, 0,
2, i, addr) < 0) {
printc_err("fet: failed to refresh "
"breakpoint #%d\n", i);
ret = -1;
} else {
bp->flags &= ~DEVICE_BP_DIRTY;
}
}
}
return ret;
}
int fet_ctl(device_t dev_base, device_ctl_t action)
{
struct fet_device *dev = (struct fet_device *)dev_base;
switch (action) {
case DEVICE_CTL_RESET:
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
3, FET_RESET_ALL, 0, 0) < 0) {
printc_err("fet: reset failed\n");
return -1;
}
break;
case DEVICE_CTL_RUN:
if (refresh_bps(dev) < 0)
printc_err("warning: fet: failed to refresh "
"breakpoints\n");
power_start(dev);
if (do_run(dev, FET_RUN_BREAKPOINT) < 0) {
power_end(dev);
return -1;
}
return 0;
case DEVICE_CTL_HALT:
power_end(dev);
if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 1) < 0) {
printc_err("fet: failed to halt CPU\n");
return -1;
}
break;
case DEVICE_CTL_STEP:
if (do_run(dev, FET_RUN_STEP) < 0)
return -1;
for (;;) {
device_status_t status = fet_poll(dev_base);
if (status == DEVICE_STATUS_ERROR ||
status == DEVICE_STATUS_INTR)
return -1;
if (status == DEVICE_STATUS_HALTED)
break;
}
break;
case DEVICE_CTL_SECURE:
if (fet_proto_xfer(&dev->proto, C_SECURE, NULL, 0, 0) < 0) {
printc_err("fet: failed to secure device\n");
return -1;
}
break;
}
return 0;
}
void fet_destroy(device_t dev_base)
{
struct fet_device *dev = (struct fet_device *)dev_base;
if (dev->fet_flags & FET_SKIP_CLOSE) {
printc_dbg("Skipping close procedure\n");
} else {
/* The second argument to C_RESET is a boolean which
* specifies whether the chip should run or not. The
* final argument is also a boolean. Setting it non-zero
* is required to get the RST pin working on the G2231,
* but it must be zero on the FR5739, or else the value
* of the reset vector gets set to 0xffff at the start
* of the next JTAG session.
*/
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3,
FET_RESET_ALL, 1,
!device_is_fram(dev_base)) < 0)
printc_err("fet: final reset failed\n");
if (fet_proto_xfer(&dev->proto, C_CLOSE, NULL, 0, 1, 0) < 0)
printc_err("fet: close command failed\n");
if (dev->base.power_buf)
powerbuf_free(dev->base.power_buf);
}
dev->proto.transport->ops->destroy(dev->proto.transport);
free(dev);
}
static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out)
{
address_t base = addr & ~1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
2, base, 2) < 0) {
printc_err("fet: failed to read byte from 0x%04x\n", addr);
return -1;
}
*out = dev->proto.data[addr & 1];
return 0;
}
static int write_byte(struct fet_device *dev, address_t addr, uint8_t value)
{
uint8_t buf[2];
address_t base = addr & ~1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, base, 2) < 0) {
printc_err("fet: failed to read byte from 0x%04x\n", addr);
return -1;
}
buf[0] = dev->proto.data[0];
buf[1] = dev->proto.data[1];
buf[addr & 1] = value;
if (fet_proto_xfer(&dev->proto, C_WRITEMEMORY, buf, 2, 1, base) < 0) {
printc_err("fet: failed to write byte from 0x%04x\n", addr);
return -1;
}
return 0;
}
static int get_adjusted_block_size(void)
{
int block_size = opdb_get_numeric("fet_block_size") & ~1;
if (block_size < 2)
block_size = 2;
if (block_size > FET_PROTO_MAX_BLOCK)
block_size = FET_PROTO_MAX_BLOCK;
return block_size;
}
int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer,
address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int block_size = get_adjusted_block_size();
if (addr & 1) {
if (read_byte(dev, addr, buffer) < 0)
return -1;
addr++;
buffer++;
count--;
}
while (count > 1) {
int plen = count > block_size ? block_size : count;
plen &= ~0x1;
if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
2, addr, plen) < 0) {
printc_err("fet: failed to read "
"from 0x%04x\n", addr);
return -1;
}
if (dev->proto.datalen < plen) {
printc_err("fet: short data: "
"%d bytes\n", dev->proto.datalen);
return -1;
}
memcpy(buffer, dev->proto.data, plen);
buffer += plen;
count -= plen;
addr += plen;
}
if (count && read_byte(dev, addr, buffer) < 0)
return -1;
return 0;
}
int fet_writemem(device_t dev_base, address_t addr,
const uint8_t *buffer, address_t count)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int block_size = get_adjusted_block_size();
refresh_fperm(dev);
if (addr & 1) {
if (write_byte(dev, addr, *buffer) < 0)
return -1;
addr++;
buffer++;
count--;
}
while (count > 1) {
int plen = count > block_size ? block_size : count;
int ret;
plen &= ~0x1;
ret = fet_proto_xfer(&dev->proto,
C_WRITEMEMORY, buffer, plen, 1, addr);
if (ret < 0) {
printc_err("fet: failed to write to 0x%04x\n",
addr);
return -1;
}
buffer += plen;
count -= plen;
addr += plen;
}
if (count && write_byte(dev, addr, *buffer) < 0)
return -1;
return 0;
}
int fet_getregs(device_t dev_base, address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
int i;
if (fet_proto_xfer(&dev->proto, C_READREGISTERS, NULL, 0, 0) < 0)
return -1;
if (dev->proto.datalen < DEVICE_NUM_REGS * 4) {
printc_err("fet: short reply (%d bytes)\n",
dev->proto.datalen);
return -1;
}
for (i = 0; i < DEVICE_NUM_REGS; i++)
regs[i] = LE_LONG(dev->proto.data, i * 4);
return 0;
}
int fet_setregs(device_t dev_base, const address_t *regs)
{
struct fet_device *dev = (struct fet_device *)dev_base;
uint8_t buf[DEVICE_NUM_REGS * 4];;
int i;
int ret;
memset(buf, 0, sizeof(buf));
for (i = 0; i < DEVICE_NUM_REGS; i++) {
buf[i * 4] = regs[i] & 0xff;
buf[i * 4 + 1] = (regs[i] >> 8) & 0xff;
buf[i * 4 + 2] = (regs[i] >> 16) & 0xff;
buf[i * 4 + 3] = regs[i] >> 24;
}
ret = fet_proto_xfer(&dev->proto, C_WRITEREGISTERS,
buf, sizeof(buf), 1, 0xffff);
if (ret < 0) {
printc_err("fet: context set failed\n");
return -1;
}
return 0;
}
static int do_configure(struct fet_device *dev,
const struct device_args *args)
{
if (!(args->flags & DEVICE_FLAG_JTAG)) {
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 1)) {
printc_dbg("Configured for Spy-Bi-Wire\n");
return 0;
}
printc_err("fet: Spy-Bi-Wire configuration failed\n");
return -1;
}
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 2)) {
printc_dbg("Configured for JTAG (2)\n");
return 0;
}
printc_err("fet: warning: JTAG configuration failed -- "
"retrying\n");
if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
2, FET_CONFIG_PROTOCOL, 0)) {
printc_dbg("Configured for JTAG (0)\n");
return 0;
}
printc_err("fet: JTAG configuration failed\n");
return -1;
}
int try_open(struct fet_device *dev, const struct device_args *args,
int send_reset)
{
transport_t transport = dev->proto.transport;
if (dev->proto.proto_flags & FET_PROTO_NOLEAD_SEND) {
printc("Resetting Olimex command processor...\n");
transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
delay_ms(5);
transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
delay_ms(5);
}
printc_dbg("Initializing FET...\n");
if (fet_proto_xfer(&dev->proto, C_INITIALIZE, NULL, 0, 0) < 0) {
printc_err("fet: open failed\n");
return -1;
}
dev->version = dev->proto.argv[0];
printc_dbg("FET protocol version is %d\n", dev->version);
if (fet_proto_xfer(&dev->proto, 0x27, NULL, 0, 1, 4) < 0) {
printc_err("fet: init failed\n");
return -1;
}
/* set VCC */
if (fet_proto_xfer(&dev->proto, C_VCC, NULL, 0,
1, args->vcc_mv) < 0)
printc_err("warning: fet: set VCC failed\n");
else
printc_dbg("Set Vcc: %d mV\n", args->vcc_mv);
if (do_configure(dev, args) < 0)
return -1;
if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) {
printc_dbg("Sending reset...\n");
if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
3, FET_RESET_ALL, 0, 0) < 0)
printc_err("warning: fet: reset failed\n");
}
/* Identify the chip */
if (do_identify(dev, args->forced_chip_id) < 0) {
printc_err("fet: identify failed\n");
return -1;
}
return 0;
}
device_t fet_open(const struct device_args *args,
int proto_flags, transport_t transport,
int fet_flags,
const struct device_class *type)
{
struct fet_device *dev = malloc(sizeof(*dev));
int i;
if (args->flags & DEVICE_FLAG_SKIP_CLOSE)
fet_flags |= FET_SKIP_CLOSE;
if (!dev) {
pr_error("fet: failed to allocate memory");
return NULL;
}
memset(dev, 0, sizeof(*dev));
fet_proto_init(&dev->proto, transport, proto_flags);
dev->base.type = type;
dev->fet_flags = fet_flags;
if (try_open(dev, args, fet_flags & FET_FORCE_RESET) < 0) {
delay_ms(500);
printc_dbg("Trying again...\n");
if (try_open(dev, args, !is_new_olimex(dev)) < 0)
goto fail;
}
/* Make sure breakpoints get reset on the first run */
if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS)
dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS;
for (i = 0; i < dev->base.max_breakpoints; i++)
dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY;
/* Initialize power profiling */
power_init(dev);
return (device_t)dev;
fail:
transport->ops->destroy(transport);
free(dev);
return NULL;
}
|