File: fet_core.c

package info (click to toggle)
mspdebug 0.25-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,700 kB
  • sloc: ansic: 67,821; makefile: 201; xml: 19
file content (1073 lines) | stat: -rw-r--r-- 25,766 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/* MSPDebug - debugging tool for the eZ430
 * Copyright (C) 2009-2012 Daniel Beer
 * Copyright (C) 2012 Stanimir Bonev
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Various constants and tables come from uif430, written by Robert
 * Kavaler (kavaler@diva.com). This is available under the same license
 * as this program, from www.relavak.com.
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include <unistd.h>

#include "util.h"
#include "fet.h"
#include "fet_core.h"
#include "fet_error.h"
#include "fet_proto.h"
#include "fet_db.h"
#include "output.h"
#include "opdb.h"
#include "ctrlc.h"

#include "fet_olimex_db.h"
#include "devicelist.h"

struct fet_device {
	struct device                   base;

	int                             version;
	int				fet_flags;

	int				poll_enable;

	struct fet_proto		proto;
	fperm_t				active_fperm;
};

/**********************************************************************
 * FET command codes.
 *
 * These come from uif430 by Robert Kavaler (kavaler@diva.com).
 * www.relavak.com
 */

#define C_INITIALIZE            0x01
#define C_CLOSE                 0x02
#define C_IDENTIFY              0x03
#define C_DEVICE                0x04
#define C_CONFIGURE             0x05
#define C_VCC                   0x06
#define C_RESET                 0x07
#define C_READREGISTERS         0x08
#define C_WRITEREGISTERS        0x09
#define C_READREGISTER          0x0a
#define C_WRITEREGISTER         0x0b
#define C_ERASE                 0x0c
#define C_READMEMORY            0x0d
#define C_WRITEMEMORY           0x0e
#define C_FASTFLASHER           0x0f
#define C_BREAKPOINT            0x10
#define C_RUN                   0x11
#define C_STATE                 0x12
#define C_SECURE                0x13
#define C_VERIFYMEMORY          0x14
#define C_FASTVERIFYMEMORY      0x15
#define C_ERASECHECK            0x16
#define C_EEMOPEN               0x17
#define C_EEMREADREGISTER       0x18
#define C_EEMREADREGISTERTEST   0x19
#define C_EEMWRITEREGISTER      0x1a
#define C_EEMCLOSE              0x1b
#define C_ERRORNUMBER           0x1c
#define C_GETCURVCCT            0x1d
#define C_GETEXTVOLTAGE         0x1e
#define C_FETSELFTEST           0x1f
#define C_FETSETSIGNALS         0x20
#define C_FETRESET              0x21
#define C_READI2C               0x22
#define C_WRITEI2C              0x23
#define C_ENTERBOOTLOADER       0x24

#define C_IDENT1                0x28
#define C_IDENT2                0x29
#define C_IDENT3                0x2b

#define C_CMM_PARAM		0x36
#define C_CMM_CTRL		0x37
#define C_CMM_READ		0x38

/* Constants for parameters of various FET commands */
#define FET_CONFIG_VERIFICATION 0
#define FET_CONFIG_EMULATION    1
#define FET_CONFIG_CLKCTRL      2
#define FET_CONFIG_MCLKCTRL     3
#define FET_CONFIG_FLASH_TESET  4
#define FET_CONFIG_FLASH_LOCK   5
#define FET_CONFIG_PROTOCOL     8
#define FET_CONFIG_UNLOCK_BSL	11

#define FET_RUN_FREE           1
#define FET_RUN_STEP           2
#define FET_RUN_BREAKPOINT     3

#define FET_RESET_PUC          0x01
#define FET_RESET_RST          0x02
#define FET_RESET_VCC          0x04
#define FET_RESET_ALL          0x07

#define FET_ERASE_SEGMENT      0
#define FET_ERASE_MAIN         1
#define FET_ERASE_ALL          2

#define FET_POLL_RUNNING        0x01
#define FET_POLL_BREAKPOINT     0x02

/**********************************************************************
 * MSP430 high-level control functions
 */

static void show_dev_info(const char *name, const struct fet_device *dev)
{
	printc_dbg("Device: %s\n", name);
	printc_dbg("Number of breakpoints: %d\n", dev->base.max_breakpoints);
}

static int identify_old(struct fet_device *dev)
{
	char idtext[64];

	if (fet_proto_xfer(&dev->proto, C_IDENTIFY, NULL, 0, 2, 70, 0) < 0)
		return -1;

	if (dev->proto.datalen < 0x26) {
		printc_err("fet: missing info\n");
		return -1;
	}

	memcpy(idtext, dev->proto.data + 4, 32);
	idtext[32] = 0;

	dev->base.max_breakpoints = LE_WORD(dev->proto.data, 0x2a);

	show_dev_info(idtext, dev);

	return 0;
}

static int identify_new(struct fet_device *dev, const char *force_id)
{
	const struct fet_db_record *r;

	if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 2, 0, 0) < 0) {
		printc_err("fet: command C_IDENT1 failed\n");
		return -1;
	}

	if (dev->proto.datalen < 2) {
		printc_err("fet: missing info\n");
		return -1;
	}

	printc_dbg("Device ID: 0x%02x%02x\n",
	       dev->proto.data[0], dev->proto.data[1]);

	if (force_id)
		r = fet_db_find_by_name(force_id);
	else
		r = fet_db_find_by_msg28(dev->proto.data,
					 dev->proto.datalen);

	if (!r) {
		printc_err("fet: unknown device\n");
		debug_hexdump("msg28_data:", dev->proto.data,
			      dev->proto.datalen);
		return -1;
	}

	dev->base.max_breakpoints = r->msg29_data[0x14];

	printc_dbg("  Code start address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0));
	/*
	 * The value at 0x02 seems to contain a "virtual code end
	 * address". So this value seems to be useful only for
	 * calculating the total ROM size.
	 *
	 * For example, as for the msp430f6736 with 128kb ROM, the ROM
	 * is split into two areas: A "near" ROM, and a "far ROM".
	 */
	const uint32_t codeSize =
	  LE_LONG(r->msg29_data, 0x02)
	  - LE_WORD(r->msg29_data, 0)
	  + 1;
	printc_dbg("  Code size         : %u byte = %u kb\n",
		   codeSize,
		   codeSize / 1024);

	printc_dbg("  RAM  start address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0x0c));
	printc_dbg("  RAM  end   address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0x0e));
	const uint16_t ramSize =
	  LE_WORD(r->msg29_data, 0x0e)
	  - LE_WORD(r->msg29_data, 0x0c)
	  + 1;
	printc_dbg("  RAM  size         : %u byte = %u kb\n",
		   ramSize,
		   ramSize / 1024);

	show_dev_info(r->name, dev);

	if (fet_proto_xfer(&dev->proto, C_IDENT3,
			   r->msg2b_data, r->msg2b_len, 0) < 0)
		printc_err("fet: warning: message C_IDENT3 failed\n");

	if (fet_proto_xfer(&dev->proto, C_IDENT2,
			   r->msg29_data, FET_DB_MSG29_LEN,
			   3, r->msg29_params[0], r->msg29_params[1],
			   r->msg29_params[2]) < 0) {
		printc_err("fet: message C_IDENT2 failed\n");
		return -1;
	}

	return 0;
}

static int identify_olimex(struct fet_device *dev, const char *force_id)
{
	const struct fet_olimex_db_record *r;
	int db_indx;
	devicetype_t set_id = DT_UNKNOWN_DEVICE;
	devicetype_t dev_id = DT_UNKNOWN_DEVICE;
	uint8_t jtag_id;

	printc_dbg("Using Olimex identification procedure\n");

	if (force_id) {
		db_indx = fet_olimex_db_find_by_name(force_id);

		if (db_indx < 0) {
			printc_err("fet: no such device: %s\n", force_id);
			return -1;
		}

		dev_id = set_id = fet_olimex_db_index_to_type(db_indx);
	}

	/* first try */
	if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
			   set_id, set_id, 0) < 0 &&
	    (4 != dev->proto.error)) /* No device error */
	{

		printc_err("fet: command C_IDENT1 failed\n");
		return -1;
	}

	if (dev->proto.datalen < 19) {
		printc_err("fet: missing info\n");
		return -1;
	}

	jtag_id = dev->proto.data[18];

	/* find device in data base */
	if (DT_UNKNOWN_DEVICE == dev_id) {
		db_indx = fet_olimex_db_identify(dev->proto.data);
		dev_id = fet_olimex_db_index_to_type(db_indx);
	}

	if ((DT_UNKNOWN_DEVICE == dev_id && 0x91 == jtag_id) ||
	    (4 == dev->proto.error)) {
		/* second try with magic pattern */
		if (fet_proto_xfer(&dev->proto, C_IDENT1, NULL, 0, 3,
				   set_id, dev_id, 0) < 0) {
			printc_err("fet: command C_IDENT1 with "
				   "magic patern failed\n");
			return -1;
		}

		db_indx = fet_olimex_db_identify(dev->proto.data);
		dev_id = fet_olimex_db_index_to_type(db_indx);
	}

	printc_dbg("Device ID: 0x%02x%02x\n",
	       dev->proto.data[0], dev->proto.data[1]);

	if (DT_UNKNOWN_DEVICE == dev_id) {
		printc_err("fet: can't find device in DB\n");
		return -1;
	}

	r = fet_db_get_record(dev_id);

	dev->base.max_breakpoints = r->msg29_data[0x14];

	printc_dbg("  Code start address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0));
	/*
	 * The value at 0x02 seems to contain a "virtual code end
	 * address". So this value seems to be useful only for
	 * calculating the total ROM size.
	 *
	 * For example, as for the msp430f6736 with 128kb ROM, the ROM
	 * is split into two areas: A "near" ROM, and a "far ROM".
	 */
	const uint32_t codeSize =
	  LE_LONG(r->msg29_data, 0x02)
	  - LE_WORD(r->msg29_data, 0)
	  + 1;
	printc_dbg("  Code size         : %u byte = %u kb\n",
		   codeSize,
		   codeSize / 1024);

	printc_dbg("  RAM  start address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0x0c));
	printc_dbg("  RAM  end   address: 0x%x\n",
		   LE_WORD(r->msg29_data, 0x0e));

	const uint16_t ramSize =
	  LE_WORD(r->msg29_data, 0x0e)
	  - LE_WORD(r->msg29_data, 0x0c)
	  + 1;

	printc_dbg("  RAM  size         : %u byte = %u kb\n",
		   ramSize, ramSize / 1024);

	show_dev_info(r->name, dev);

	if (fet_proto_xfer(&dev->proto, C_IDENT3,
			   r->msg2b_data, r->msg2b_len, 0) < 0)
		printc_err("fet: warning: message C_IDENT3 failed\n");

	if (fet_proto_xfer(&dev->proto, C_IDENT2,
			   r->msg29_data, FET_DB_MSG29_LEN,
			   3, r->msg29_params[0], r->msg29_params[1],
			   r->msg29_params[2]) < 0) {
		printc_err("fet: message C_IDENT2 failed\n");
		return -1;
	}

	return 0;
}

static int is_new_olimex(const struct fet_device *dev)
{
	if ((&device_olimex_iso_mk2 == dev->base.type) &&
	    (20000004 <= dev->version))
		return 1;

	if (((&device_olimex == dev->base.type) ||
	     (&device_olimex_v1 == dev->base.type) ||
	     (&device_olimex_iso == dev->base.type)) &&
	    (10004003 <= dev->version))
		return 1;

	return 0;
}

static int try_new(struct fet_device *dev, const char *force_id)
{
	if (!identify_new(dev, force_id))
		return 0;

	return identify_olimex(dev, force_id);
}

static int do_identify(struct fet_device *dev, const char *force_id)
{
	if (is_new_olimex(dev))
		return identify_olimex(dev, force_id);

	if (dev->fet_flags & FET_IDENTIFY_NEW)
		return try_new(dev, force_id);

	if (dev->version < 20300000)
		return identify_old(dev);

	return try_new(dev, force_id);
}

static void power_init(struct fet_device *dev)
{
	if (fet_proto_xfer(&dev->proto, C_CMM_PARAM, NULL, 0, 0) < 0) {
		printc_err("warning: device does not support power "
			   "profiling\n");
		return;
	}

	if (dev->proto.argv[0] <= 0 || dev->proto.argv[0] <= 0) {
		printc_err("Bad parameters returned by C_CMM_PARAM: "
			   "bufsize = %d bytes, %d us/sample\n",
			   dev->proto.argv[1], dev->proto.argv[0]);
		return;
	}

	printc("Power profiling enabled: bufsize = %d bytes, %d us/sample\n",
		dev->proto.argv[1], dev->proto.argv[0]);
	printc_shell("power-sample-us %d\n", dev->proto.argv[0]);

	dev->base.power_buf = powerbuf_new(POWERBUF_DEFAULT_SAMPLES,
		dev->proto.argv[0]);
	if (!dev->base.power_buf) {
		printc_err("Failed to allocate memory for power profile\n");
		return;
	}
}

static int power_start(struct fet_device *dev)
{
	if (!dev->base.power_buf)
		return 0;

	if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
		printc_err("fet: failed to start power profiling, "
			   "disabling\n");
		powerbuf_free(dev->base.power_buf);
		dev->base.power_buf = NULL;
		return -1;
	}

	powerbuf_begin_session(dev->base.power_buf, time(NULL));
	dev->poll_enable = 1;
	return 0;
}

static int power_end(struct fet_device *dev)
{
	if (!dev->base.power_buf)
		return 0;

	powerbuf_end_session(dev->base.power_buf);
	dev->poll_enable = 0;

	if (fet_proto_xfer(&dev->proto, C_CMM_CTRL, NULL, 0, 1, 1) < 0) {
		printc_err("fet: failed to end power profiling\n");
		return -1;
	}

	return 0;
}

static void shell_power(const uint8_t *data, int len)
{
	while (len > 0) {
		int plen = 128;
		char text[256];

		if (plen > len)
			plen = len;

		base64_encode(data, plen, text, sizeof(text));
		printc_shell("power-samples %s\n", text);

		len -= plen;
		data += plen;
	}
}

static int power_poll(struct fet_device *dev)
{
	address_t mab;
	address_t mab_samples[1024];
	unsigned int cur_samples[1024];
	unsigned int count = 0;
	int i;

	if (!dev->base.power_buf || !dev->poll_enable)
		return 0;

	if (fet_proto_xfer(&dev->proto, C_CMM_READ, NULL, 0, 0) < 0) {
		printc_err("fet: failed to fetch power data, disabling\n");
		power_end(dev);
		powerbuf_free(dev->base.power_buf);
		dev->base.power_buf = NULL;
		dev->poll_enable = 0;
		return -1;
	}

	shell_power(dev->proto.data, dev->proto.datalen);

	mab = powerbuf_last_mab(dev->base.power_buf);
	for (i = 0; i + 3 < dev->proto.datalen; i += 4) {
		uint32_t s = LE_LONG(dev->proto.data, i);

		if (s & 0x80000000) {
			mab = s & 0x7fffffff;
		} else if (count + 1 < ARRAY_LEN(cur_samples)) {
			cur_samples[count] = s;
			mab_samples[count] = mab;
			count++;
		}
	}

	powerbuf_add_samples(dev->base.power_buf, count,
			     cur_samples, mab_samples);

	return 0;
}

static int refresh_fperm(struct fet_device *dev)
{
	fperm_t fp = opdb_read_fperm();
	fperm_t delta = dev->active_fperm ^ fp;

	if (delta & FPERM_LOCKED_FLASH) {
		int opt = (fp & FPERM_LOCKED_FLASH) ? 1 : 0;

		printc_dbg("%s locked flash access\n",
			   opt ? "Enabling" : "Disabling");
		if (fet_proto_xfer(&dev->proto,
				   C_CONFIGURE, NULL, 0,
				   2, FET_CONFIG_FLASH_LOCK, opt) < 0) {
			printc_err("fet: FET_CONFIG_FLASH_LOCK failed\n");
			return -1;
		}
	}

	if (delta & FPERM_BSL) {
		int opt = (fp & FPERM_BSL) ? 1 : 0;

		printc_dbg("%s BSL access\n",
			   opt ? "Enabling" : "Disabling");
		if (fet_proto_xfer(&dev->proto,
				   C_CONFIGURE, NULL, 0,
				   2, FET_CONFIG_UNLOCK_BSL, opt) < 0) {
			printc_err("fet: FET_CONFIG_UNLOCK_BSL failed\n");
			return -1;
		}
	}

	dev->active_fperm = fp;
	return 0;
}

static int do_run(struct fet_device *dev, int type)
{
	if (fet_proto_xfer(&dev->proto, C_RUN, NULL, 0, 2, type, 0) < 0) {
		printc_err("fet: failed to restart CPU\n");
		return -1;
	}

	return 0;
}

int fet_erase(device_t dev_base, device_erase_type_t type, address_t addr)
{
	struct fet_device *dev = (struct fet_device *)dev_base;
	int fet_erase_type = FET_ERASE_MAIN;

	if (fet_proto_xfer(&dev->proto,
			   C_CONFIGURE, NULL, 0,
			   2, FET_CONFIG_CLKCTRL, 0x26) < 0) {
		printc_err("fet: config (1) failed\n");
		return -1;
	}

	refresh_fperm(dev);

	switch (type) {
	case DEVICE_ERASE_MAIN:
		fet_erase_type = FET_ERASE_MAIN;
		addr = 0xfffe;
		break;

	case DEVICE_ERASE_SEGMENT:
		fet_erase_type = FET_ERASE_SEGMENT;
		break;

	case DEVICE_ERASE_ALL:
		fet_erase_type = FET_ERASE_ALL;
		addr = 0xfffe;
		break;

	default:
		printc_err("fet: unsupported erase type\n");
		return -1;
	}

	if (fet_proto_xfer(&dev->proto, C_ERASE, NULL, 0,
			   3, fet_erase_type, addr, 1) < 0) {
		printc_err("fet: erase command failed\n");
		return -1;
	}

	if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
			   3, FET_RESET_ALL, 0, 0) < 0) {
		printc_err("fet: reset failed\n");
		return -1;
	}

	return 0;
}

device_status_t fet_poll(device_t dev_base)
{
	struct fet_device *dev = (struct fet_device *)dev_base;

	if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 0) < 0) {
		printc_err("fet: polling failed\n");
		power_end(dev);
		return DEVICE_STATUS_ERROR;
	}

	if (dev->base.power_buf)
		power_poll(dev);
	else
		delay_ms(50);

	if (!(dev->proto.argv[0] & FET_POLL_RUNNING)) {
		power_end(dev);
		return DEVICE_STATUS_HALTED;
	}

	if (ctrlc_check())
		return DEVICE_STATUS_INTR;

	return DEVICE_STATUS_RUNNING;
}

static int refresh_bps(struct fet_device *dev)
{
	int i;
	int ret = 0;

	for (i = 0; i < dev->base.max_breakpoints; i++) {
		struct device_breakpoint *bp = &dev->base.breakpoints[i];

		if ((bp->flags & DEVICE_BP_DIRTY) &&
		    bp->type == DEVICE_BPTYPE_BREAK) {
			uint16_t addr = bp->addr;

			if (!(bp->flags & DEVICE_BP_ENABLED))
				addr = 0;

			if (fet_proto_xfer(&dev->proto, C_BREAKPOINT, NULL, 0,
					   2, i, addr) < 0) {
				printc_err("fet: failed to refresh "
					"breakpoint #%d\n", i);
				ret = -1;
			} else {
				bp->flags &= ~DEVICE_BP_DIRTY;
			}
		}
	}

	return ret;
}

int fet_ctl(device_t dev_base, device_ctl_t action)
{
	struct fet_device *dev = (struct fet_device *)dev_base;

	switch (action) {
	case DEVICE_CTL_RESET:
		if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
				   3, FET_RESET_ALL, 0, 0) < 0) {
			printc_err("fet: reset failed\n");
			return -1;
		}
		break;

	case DEVICE_CTL_RUN:
		if (refresh_bps(dev) < 0)
			printc_err("warning: fet: failed to refresh "
				"breakpoints\n");

		power_start(dev);
		if (do_run(dev, FET_RUN_BREAKPOINT) < 0) {
			power_end(dev);
			return -1;
		}

		return 0;

	case DEVICE_CTL_HALT:
		power_end(dev);
		if (fet_proto_xfer(&dev->proto, C_STATE, NULL, 0, 1, 1) < 0) {
			printc_err("fet: failed to halt CPU\n");
			return -1;
		}
		break;

	case DEVICE_CTL_STEP:
		if (do_run(dev, FET_RUN_STEP) < 0)
			return -1;

		for (;;) {
			device_status_t status = fet_poll(dev_base);

			if (status == DEVICE_STATUS_ERROR ||
			    status == DEVICE_STATUS_INTR)
				return -1;

			if (status == DEVICE_STATUS_HALTED)
				break;
		}
		break;

	case DEVICE_CTL_SECURE:
		if (fet_proto_xfer(&dev->proto, C_SECURE, NULL, 0, 0) < 0) {
			printc_err("fet: failed to secure device\n");
			return -1;
		}
		break;
	}

	return 0;
}

void fet_destroy(device_t dev_base)
{
	struct fet_device *dev = (struct fet_device *)dev_base;

	if (dev->fet_flags & FET_SKIP_CLOSE) {
		printc_dbg("Skipping close procedure\n");
	} else {
		/* The second argument to C_RESET is a boolean which
		 * specifies whether the chip should run or not. The
		 * final argument is also a boolean. Setting it non-zero
		 * is required to get the RST pin working on the G2231,
		 * but it must be zero on the FR5739, or else the value
		 * of the reset vector gets set to 0xffff at the start
		 * of the next JTAG session.
		 */
		if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0, 3,
				   FET_RESET_ALL, 1,
				   !device_is_fram(dev_base)) < 0)
			printc_err("fet: final reset failed\n");

		if (fet_proto_xfer(&dev->proto, C_CLOSE, NULL, 0, 1, 0) < 0)
			printc_err("fet: close command failed\n");

		if (dev->base.power_buf)
			powerbuf_free(dev->base.power_buf);
	}

	dev->proto.transport->ops->destroy(dev->proto.transport);
	free(dev);
}

static int read_byte(struct fet_device *dev, address_t addr, uint8_t *out)
{
	address_t base = addr & ~1;

	if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
			   2, base, 2) < 0) {
		printc_err("fet: failed to read byte from 0x%04x\n", addr);
		return -1;
	}

	*out = dev->proto.data[addr & 1];
	return 0;
}

static int write_byte(struct fet_device *dev, address_t addr, uint8_t value)
{
	uint8_t buf[2];
	address_t base = addr & ~1;

	if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0, 2, base, 2) < 0) {
		printc_err("fet: failed to read byte from 0x%04x\n", addr);
		return -1;
	}

	buf[0] = dev->proto.data[0];
	buf[1] = dev->proto.data[1];
	buf[addr & 1] = value;

	if (fet_proto_xfer(&dev->proto, C_WRITEMEMORY, buf, 2, 1, base) < 0) {
		printc_err("fet: failed to write byte from 0x%04x\n", addr);
		return -1;
	}

	return 0;
}

static int get_adjusted_block_size(void)
{
	int block_size = opdb_get_numeric("fet_block_size") & ~1;

	if (block_size < 2)
		block_size = 2;
	if (block_size > FET_PROTO_MAX_BLOCK)
		block_size = FET_PROTO_MAX_BLOCK;

	return block_size;
}

int fet_readmem(device_t dev_base, address_t addr, uint8_t *buffer,
		address_t count)
{
	struct fet_device *dev = (struct fet_device *)dev_base;
	int block_size = get_adjusted_block_size();

	if (addr & 1) {
		if (read_byte(dev, addr, buffer) < 0)
			return -1;
		addr++;
		buffer++;
		count--;
	}

	while (count > 1) {
		int plen = count > block_size ? block_size : count;

		plen &= ~0x1;

		if (fet_proto_xfer(&dev->proto, C_READMEMORY, NULL, 0,
				   2, addr, plen) < 0) {
			printc_err("fet: failed to read "
				"from 0x%04x\n", addr);
			return -1;
		}

		if (dev->proto.datalen < plen) {
			printc_err("fet: short data: "
				"%d bytes\n", dev->proto.datalen);
			return -1;
		}

		memcpy(buffer, dev->proto.data, plen);
		buffer += plen;
		count -= plen;
		addr += plen;
	}

	if (count && read_byte(dev, addr, buffer) < 0)
		return -1;

	return 0;
}

int fet_writemem(device_t dev_base, address_t addr,
		 const uint8_t *buffer, address_t count)
{
	struct fet_device *dev = (struct fet_device *)dev_base;
	int block_size = get_adjusted_block_size();

	refresh_fperm(dev);

	if (addr & 1) {
		if (write_byte(dev, addr, *buffer) < 0)
			return -1;
		addr++;
		buffer++;
		count--;
	}

	while (count > 1) {
		int plen = count > block_size ? block_size : count;
		int ret;

		plen &= ~0x1;

		ret = fet_proto_xfer(&dev->proto,
				     C_WRITEMEMORY, buffer, plen, 1, addr);

		if (ret < 0) {
			printc_err("fet: failed to write to 0x%04x\n",
				addr);
			return -1;
		}

		buffer += plen;
		count -= plen;
		addr += plen;
	}

	if (count && write_byte(dev, addr, *buffer) < 0)
		return -1;

	return 0;
}

int fet_getregs(device_t dev_base, address_t *regs)
{
	struct fet_device *dev = (struct fet_device *)dev_base;
	int i;

	if (fet_proto_xfer(&dev->proto, C_READREGISTERS, NULL, 0, 0) < 0)
		return -1;

	if (dev->proto.datalen < DEVICE_NUM_REGS * 4) {
		printc_err("fet: short reply (%d bytes)\n",
			dev->proto.datalen);
		return -1;
	}

	for (i = 0; i < DEVICE_NUM_REGS; i++)
		regs[i] = LE_LONG(dev->proto.data, i * 4);

	return 0;
}

int fet_setregs(device_t dev_base, const address_t *regs)
{
	struct fet_device *dev = (struct fet_device *)dev_base;
	uint8_t buf[DEVICE_NUM_REGS * 4];;
	int i;
	int ret;

	memset(buf, 0, sizeof(buf));

	for (i = 0; i < DEVICE_NUM_REGS; i++) {
		buf[i * 4] = regs[i] & 0xff;
		buf[i * 4 + 1] = (regs[i] >> 8) & 0xff;
		buf[i * 4 + 2] = (regs[i] >> 16) & 0xff;
		buf[i * 4 + 3] = regs[i] >> 24;
	}

	ret = fet_proto_xfer(&dev->proto, C_WRITEREGISTERS,
			     buf, sizeof(buf), 1, 0xffff);

	if (ret < 0) {
		printc_err("fet: context set failed\n");
		return -1;
	}

	return 0;
}

static int do_configure(struct fet_device *dev,
			const struct device_args *args)
{
	if (!(args->flags & DEVICE_FLAG_JTAG)) {
		if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
				    2, FET_CONFIG_PROTOCOL, 1)) {
			printc_dbg("Configured for Spy-Bi-Wire\n");
			return 0;
		}

		printc_err("fet: Spy-Bi-Wire configuration failed\n");
		return -1;
	}

	if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
			    2, FET_CONFIG_PROTOCOL, 2)) {
		printc_dbg("Configured for JTAG (2)\n");
		return 0;
	}

	printc_err("fet: warning: JTAG configuration failed -- "
		"retrying\n");

	if (!fet_proto_xfer(&dev->proto, C_CONFIGURE, NULL, 0,
			    2, FET_CONFIG_PROTOCOL, 0)) {
		printc_dbg("Configured for JTAG (0)\n");
		return 0;
	}

	printc_err("fet: JTAG configuration failed\n");
	return -1;
}

int try_open(struct fet_device *dev, const struct device_args *args,
	     int send_reset)
{
	transport_t transport = dev->proto.transport;

	if (dev->proto.proto_flags & FET_PROTO_NOLEAD_SEND) {
		printc("Resetting Olimex command processor...\n");
		transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
		delay_ms(5);
		transport->ops->send(transport, (const uint8_t *)"\x7e", 1);
		delay_ms(5);
	}

	printc_dbg("Initializing FET...\n");
	if (fet_proto_xfer(&dev->proto, C_INITIALIZE, NULL, 0, 0) < 0) {
		printc_err("fet: open failed\n");
		return -1;
	}

	dev->version = dev->proto.argv[0];
	printc_dbg("FET protocol version is %d\n", dev->version);

	if (fet_proto_xfer(&dev->proto, 0x27, NULL, 0, 1, 4) < 0) {
		printc_err("fet: init failed\n");
		return -1;
	}

	/* set VCC */
	if (fet_proto_xfer(&dev->proto, C_VCC, NULL, 0,
			   1, args->vcc_mv) < 0)
		printc_err("warning: fet: set VCC failed\n");
	else
		printc_dbg("Set Vcc: %d mV\n", args->vcc_mv);


	if (do_configure(dev, args) < 0)
		return -1;

	if (send_reset || args->flags & DEVICE_FLAG_FORCE_RESET) {
		printc_dbg("Sending reset...\n");
		if (fet_proto_xfer(&dev->proto, C_RESET, NULL, 0,
				   3, FET_RESET_ALL, 0, 0) < 0)
			printc_err("warning: fet: reset failed\n");
	}

	/* Identify the chip */
	if (do_identify(dev, args->forced_chip_id) < 0) {
		printc_err("fet: identify failed\n");
		return -1;
	}

	return 0;
}

device_t fet_open(const struct device_args *args,
		  int proto_flags, transport_t transport,
		  int fet_flags,
		  const struct device_class *type)
{
	struct fet_device *dev = malloc(sizeof(*dev));
	int i;

	if (args->flags & DEVICE_FLAG_SKIP_CLOSE)
		fet_flags |= FET_SKIP_CLOSE;

	if (!dev) {
		pr_error("fet: failed to allocate memory");
		return NULL;
	}

	memset(dev, 0, sizeof(*dev));

	fet_proto_init(&dev->proto, transport, proto_flags);

	dev->base.type = type;
	dev->fet_flags = fet_flags;

	if (try_open(dev, args, fet_flags & FET_FORCE_RESET) < 0) {
		delay_ms(500);
		printc_dbg("Trying again...\n");
		if (try_open(dev, args, !is_new_olimex(dev)) < 0)
			goto fail;
	}

	/* Make sure breakpoints get reset on the first run */
	if (dev->base.max_breakpoints > DEVICE_MAX_BREAKPOINTS)
		dev->base.max_breakpoints = DEVICE_MAX_BREAKPOINTS;
	for (i = 0; i < dev->base.max_breakpoints; i++)
		dev->base.breakpoints[i].flags = DEVICE_BP_DIRTY;

	/* Initialize power profiling */
	power_init(dev);

	return (device_t)dev;

 fail:
	transport->ops->destroy(transport);
	free(dev);
	return NULL;
}