1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
/* MSPDebug - debugging tool for MSP430 MCUs
* Copyright (C) 2009, 2010 Daniel Beer
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "btree.h"
#include "output.h"
#include "util.h"
#define MAX_HEIGHT 16
/* Btree pages consist of the following: a page header (struct btree_page),
* followed by a block of memory consisting of:
*
* For a leaf node:
* An array of N keys, then an array of N data.
*
* For a non-leaf node:
* An array of N keys, then an array of N struct btree_page *.
*
* Where N is the branch factor.
*/
struct btree_page {
int height;
int num_children;
struct btree *owner;
const struct btree_def *def;
};
#define PAGE_KEY(p, i) \
(((char *)(p)) + sizeof(struct btree_page) + \
(i) * (p)->def->key_size)
#define PAGE_DATA(p, i) \
(((char *)(p)) + sizeof(struct btree_page) + \
(p)->def->branches * (p)->def->key_size + \
(i) * (p)->def->data_size)
#define PAGE_PTR(p, i) \
((struct btree_page **) \
(((char *)(p)) + sizeof(struct btree_page) + \
(p)->def->branches * (p)->def->key_size + \
(i) * sizeof(struct btree_page *))) \
struct btree {
const struct btree_def *def;
struct btree_page *root;
struct btree_page *path[MAX_HEIGHT];
int slot[MAX_HEIGHT];
};
/************************************************************************
* Debugging
*/
#ifdef DEBUG_BTREE
static void check_page(struct btree_page *p,
const void *lbound, const void *ubound,
int height)
{
const struct btree_def *def = p->def;
int i;
assert (p);
assert (p->height == height);
if (p != p->owner->root) {
assert (p->num_children >= def->branches / 2);
assert (p->num_children <= def->branches);
}
for (i = 0; i < p->num_children; i++) {
const void *key = PAGE_KEY(p, i);
const void *next_key = ubound;
if (i + 1 < p->num_children)
next_key = PAGE_KEY(p, i + 1);
assert (def->compare(key, lbound) >= 0);
if (next_key) {
assert (def->compare(key, next_key) < 0);
}
if (ubound) {
assert (def->compare(key, ubound) < 0);
}
if (p->height)
check_page(*PAGE_PTR(p, i), key, next_key, height - 1);
}
}
static void check_btree(btree_t bt)
{
assert (bt->def);
if (bt->root->height) {
assert (bt->root->num_children >= 2);
}
check_page(bt->root, bt->def->zero, NULL, bt->root->height);
}
#else
#define check_btree(bt)
#endif
/************************************************************************
* B+Tree auxiliary functions
*/
static void destroy_page(struct btree_page *p)
{
if (!p)
return;
if (p->height) {
int i;
for (i = 0; i < p->num_children; i++)
destroy_page(*PAGE_PTR(p, i));
}
free(p);
}
static struct btree_page *allocate_page(btree_t bt, int height)
{
const struct btree_def *def = bt->def;
struct btree_page *p;
int size = sizeof(*p) + def->key_size * def->branches;
if (height)
size += sizeof(struct btree_page *) * def->branches;
else
size += sizeof(def->data_size) * def->branches;
p = malloc(size);
if (!p) {
printc_err("btree: couldn't allocate page: %s\n",
last_error());
return NULL;
}
memset(p, 0, size);
p->def = bt->def;
p->owner = bt;
p->height = height;
return p;
}
static void split_page(struct btree_page *op, struct btree_page *np)
{
const struct btree_def *def = op->def;
btree_t bt = op->owner;
const int halfsize = def->branches / 2;
assert (op->num_children == def->branches);
memcpy(PAGE_KEY(np, 0), PAGE_KEY(op, halfsize),
halfsize * def->key_size);
if (op->height)
memcpy(PAGE_PTR(np, 0), PAGE_PTR(op, halfsize),
halfsize * sizeof(struct btree_page *));
else
memcpy(PAGE_DATA(np, 0), PAGE_DATA(op, halfsize),
halfsize * def->data_size);
op->num_children = halfsize;
np->num_children = halfsize;
/* Fix up the cursor if we split an active page */
if (bt->slot[0] >= 0 && bt->path[op->height] == op &&
bt->slot[op->height] > op->num_children) {
bt->slot[op->height] -= op->num_children;
bt->path[op->height] = np;
}
}
static void insert_data(struct btree_page *p, int s,
const void *key, const void *data)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s;
assert (!p->height);
assert (p->num_children < def->branches);
assert (s >= 0 && s <= p->num_children);
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
r * def->key_size);
memmove(PAGE_DATA(p, s + 1), PAGE_DATA(p, s),
r * def->data_size);
memcpy(PAGE_KEY(p, s), key, def->key_size);
memcpy(PAGE_DATA(p, s), data, def->data_size);
p->num_children++;
/* Fix up the cursor if we inserted before it, or if we're inserting
* a pointer to the cursor data itself (as in a borrow).
*/
if (bt->slot[0] >= 0) {
if (data == PAGE_DATA(bt->path[0], bt->slot[0])) {
bt->path[0] = p;
bt->slot[0] = s;
} else if (bt->path[0] == p && s <= bt->slot[0]) {
bt->slot[0]++;
}
}
}
static void insert_ptr(struct btree_page *p, int s,
const void *key, struct btree_page *ptr)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s;
assert (p->height);
assert (p->num_children < def->branches);
assert (s >= 0 && s <= p->num_children);
memmove(PAGE_KEY(p, s + 1), PAGE_KEY(p, s),
r * def->key_size);
memmove(PAGE_PTR(p, s + 1), PAGE_PTR(p, s),
r * sizeof(struct btree_page *));
memcpy(PAGE_KEY(p, s), key, def->key_size);
*PAGE_PTR(p, s) = ptr;
p->num_children++;
/* Fix up the cursor if we inserted before it, or if we just inserted
* the pointer for the active path (as in a split or borrow).
*/
if (bt->slot[0] >= 0) {
if (ptr == bt->path[p->height - 1]) {
bt->path[p->height] = p;
bt->slot[p->height] = s;
} else if (bt->path[p->height] == p &&
s <= bt->slot[p->height]) {
bt->slot[p->height]++;
}
}
}
static void delete_item(struct btree_page *p, int s)
{
const struct btree_def *def = p->def;
btree_t bt = p->owner;
int r = p->num_children - s - 1;
assert (s >= 0 && s < p->num_children);
memmove(PAGE_KEY(p, s), PAGE_KEY(p, s + 1),
r * def->key_size);
if (p->height)
memmove(PAGE_PTR(p, s), PAGE_PTR(p, s + 1),
r * sizeof(struct btree_page *));
else
memmove(PAGE_DATA(p, s), PAGE_DATA(p, s + 1),
r * def->data_size);
p->num_children--;
/* Fix up the cursor if we deleted before it */
if (bt->slot[0] >= 0 && bt->path[p->height] == p &&
s <= bt->slot[p->height])
bt->slot[p->height]--;
}
static void move_item(struct btree_page *from, int from_pos,
struct btree_page *to, int to_pos)
{
if (from->height)
insert_ptr(to, to_pos, PAGE_KEY(from, from_pos),
*PAGE_PTR(from, from_pos));
else
insert_data(to, to_pos, PAGE_KEY(from, from_pos),
PAGE_DATA(from, from_pos));
delete_item(from, from_pos);
}
static void merge_pages(struct btree_page *lower,
struct btree_page *higher)
{
const struct btree_def *def = lower->def;
btree_t bt = lower->owner;
assert (lower->num_children + higher->num_children < def->branches);
memcpy(PAGE_KEY(lower, lower->num_children),
PAGE_KEY(higher, 0),
higher->num_children * def->key_size);
if (lower->height)
memcpy(PAGE_PTR(lower, lower->num_children),
PAGE_PTR(higher, 0),
higher->num_children * sizeof(struct btree_page *));
else
memcpy(PAGE_DATA(lower, lower->num_children),
PAGE_DATA(higher, 0),
higher->num_children * def->data_size);
lower->num_children += higher->num_children;
/* Fix up the cursor if we subsumed an active page */
if (bt->slot[0] >= 0) {
if (bt->path[higher->height] == higher) {
bt->path[higher->height] = lower;
bt->slot[higher->height] += lower->num_children;
}
}
}
static int find_key_le(const struct btree_page *p, const void *key)
{
const struct btree_def *def = p->def;
int i;
for (i = 0; i < p->num_children; i++)
if (def->compare(key, PAGE_KEY(p, i)) < 0)
return i - 1;
return p->num_children - 1;
}
static int trace_path(btree_t bt, const void *key,
struct btree_page **path, int *slot)
{
const struct btree_def *def = bt->def;
struct btree_page *p = bt->root;
int h;
for (h = p->height; h >= 0; h--) {
int s = find_key_le(p, key);
path[h] = p;
slot[h] = s;
if (h) {
assert (s >= 0);
p = *PAGE_PTR(p, s);
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
return 1;
}
}
return 0;
}
static void cursor_first(btree_t bt)
{
int h;
struct btree_page *p = bt->root;
if (!bt->root->num_children) {
bt->slot[0] = -1;
return;
}
for (h = bt->root->height; h >= 0; h--) {
assert (p->num_children > 0);
bt->path[h] = p;
bt->slot[h] = 0;
if (h)
p = *PAGE_PTR(p, 0);
}
}
static void cursor_next(btree_t bt)
{
int h;
if (bt->slot[0] < 0)
return;
/* Ascend until we find a suitable sibling */
for (h = 0; h <= bt->root->height; h++) {
struct btree_page *p = bt->path[h];
if (bt->slot[h] + 1 < p->num_children) {
bt->slot[h]++;
while (h > 0) {
p = *PAGE_PTR(p, bt->slot[h]);
h--;
bt->slot[h] = 0;
bt->path[h] = p;
}
return;
}
}
/* Exhausted all levels */
bt->slot[0] = -1;
}
/************************************************************************
* Public interface
*/
btree_t btree_alloc(const struct btree_def *def)
{
btree_t bt;
if (def->branches < 2 || (def->branches & 1)) {
printc_err("btree: invalid branch count: %d\n",
def->branches);
return NULL;
}
bt = malloc(sizeof(*bt));
if (!bt) {
printc_err("btree: couldn't allocate tree: %s\n",
last_error());
return NULL;
}
memset(bt, 0, sizeof(*bt));
bt->def = def;
bt->slot[0] = -1;
bt->root = allocate_page(bt, 0);
if (!bt->root) {
printc_err("btree: couldn't allocate root node: %s\n",
last_error());
free(bt);
return NULL;
}
return bt;
}
void btree_free(btree_t bt)
{
check_btree(bt);
destroy_page(bt->root);
free(bt);
}
void btree_clear(btree_t bt)
{
struct btree_page *p;
struct btree_page *path_up = 0;
check_btree(bt);
/* The cursor will have nothing to point to after this. */
bt->slot[0] = -1;
/* First, find the last leaf node, which we can re-use as an
* empty root.
*/
p = bt->root;
while (p->height) {
path_up = p;
p = *PAGE_PTR(p, p->num_children - 1);
}
/* Unlink it from the tree and then destroy everything else. */
if (path_up) {
path_up->num_children--;
destroy_page(bt->root);
}
/* Clear it out and make it the new root */
p->num_children = 0;
bt->root = p;
}
int btree_put(btree_t bt, const void *key, const void *data)
{
const struct btree_def *def = bt->def;
struct btree_page *new_root = NULL;
struct btree_page *path_new[MAX_HEIGHT] = {0};
struct btree_page *path_old[MAX_HEIGHT] = {0};
int slot_old[MAX_HEIGHT] = {0};
int h;
check_btree(bt);
/* Special case: cursor overwrite */
if (!key) {
if (bt->slot[0] < 0) {
printc_err("btree: put at invalid cursor\n");
return -1;
}
memcpy(PAGE_DATA(bt->path[0], bt->slot[0]), data,
def->data_size);
return 1;
}
/* Find a path down the tree that leads to the page which should
* contain this datum (though the page might be too big to hold it).
*/
if (trace_path(bt, key, path_old, slot_old)) {
/* Special case: overwrite existing item */
memcpy(PAGE_DATA(path_old[0], slot_old[0]), data,
def->data_size);
return 1;
}
/* Trace from the leaf up. If the leaf is at its maximum size, it will
* need to split, and cause a pointer to be added in the parent page
* of the same node (which may in turn cause it to split).
*/
for (h = 0; h <= bt->root->height; h++) {
if (path_old[h]->num_children < def->branches)
break;
path_new[h] = allocate_page(bt, h);
if (!path_new[h])
goto fail;
}
/* If the split reaches the top (i.e. the root splits), then we need
* to allocate a new root node.
*/
if (h > bt->root->height) {
if (h >= MAX_HEIGHT) {
printc_err("btree: maximum height exceeded\n");
goto fail;
}
new_root = allocate_page(bt, h);
if (!new_root)
goto fail;
}
/* Trace up to one page above the split. At each page that needs
* splitting, copy the top half of keys into the new page. Also,
* insert a key into one of the pages at all pages from the leaf
* to the page above the top of the split.
*/
for (h = 0; h <= bt->root->height; h++) {
int s = slot_old[h] + 1;
struct btree_page *p = path_old[h];
/* If there's a split at this level, copy the top half of
* the keys from the old page to the new one. Check to see
* if the position we were going to insert into is in the
* old page or the new one.
*/
if (path_new[h]) {
split_page(path_old[h], path_new[h]);
if (s > p->num_children) {
s -= p->num_children;
p = path_new[h];
}
}
/* Insert the key in the appropriate page */
if (h)
insert_ptr(p, s, PAGE_KEY(path_new[h - 1], 0),
path_new[h - 1]);
else
insert_data(p, s, key, data);
/* If there was no split at this level, there's nothing to
* insert higher up, and we're all done.
*/
if (!path_new[h])
return 0;
}
/* If we made it this far, the split reached the top of the tree, and
* we need to grow it using the extra page we allocated.
*/
assert (new_root);
if (bt->slot[0] >= 0) {
/* Fix up the cursor, if active */
bt->slot[new_root->height] =
bt->path[bt->root->height] == new_root ? 1 : 0;
bt->path[new_root->height] = new_root;
}
memcpy(PAGE_KEY(new_root, 0), def->zero, def->key_size);
*PAGE_PTR(new_root, 0) = path_old[h - 1];
memcpy(PAGE_KEY(new_root, 1), PAGE_KEY(path_new[h - 1], 0),
def->key_size);
*PAGE_PTR(new_root, 1) = path_new[h - 1];
new_root->num_children = 2;
bt->root = new_root;
return 0;
fail:
for (h = 0; h <= bt->root->height; h++)
if (path_new[h])
free(path_new[h]);
return -1;
}
int btree_delete(btree_t bt, const void *key)
{
const struct btree_def *def = bt->def;
const int halfsize = def->branches / 2;
struct btree_page *path[MAX_HEIGHT] = {0};
int slot[MAX_HEIGHT] = {0};
int h;
check_btree(bt);
/* Trace a path to the item to be deleted */
if (!key) {
if (bt->slot[0] < 0)
return 1;
memcpy(path, bt->path, sizeof(path));
memcpy(slot, bt->slot, sizeof(slot));
} else if (!trace_path(bt, key, path, slot)) {
return 1;
}
/* Select the next item if we're deleting at the cursor */
if (bt->slot[0] == slot[0] && bt->path[0] == path[0])
cursor_next(bt);
/* Delete from the leaf node. If it's still full enough, then we don't
* need to do anything else.
*/
delete_item(path[0], slot[0]);
if (path[0]->num_children >= halfsize)
return 0;
/* Trace back up the tree, fixing underfull nodes. If we can fix by
* borrowing, do it and we're done. Otherwise, we need to fix by
* merging, which may result in another underfull node, and we need
* to continue.
*/
for (h = 1; h <= bt->root->height; h++) {
struct btree_page *p = path[h];
struct btree_page *c = path[h - 1];
int s = slot[h];
if (s > 0) {
/* Borrow/merge from lower page */
struct btree_page *d = *PAGE_PTR(p, s - 1);
if (d->num_children > halfsize) {
move_item(d, d->num_children - 1, c, 0);
memcpy(PAGE_KEY(p, s), PAGE_KEY(c, 0),
def->key_size);
return 0;
}
merge_pages(d, c);
delete_item(p, s);
free(c);
} else {
/* Borrow/merge from higher page */
struct btree_page *d = *PAGE_PTR(p, s + 1);
if (d->num_children > halfsize) {
move_item(d, 0, c, c->num_children);
memcpy(PAGE_KEY(p, s + 1),
PAGE_KEY(d, 0),
def->key_size);
return 0;
}
merge_pages(c, d);
delete_item(p, s + 1);
free(d);
}
if (p->num_children >= halfsize)
return 0;
}
/* If the root contains only a single pointer to another page,
* shrink the tree. This does not affect the cursor.
*/
if (bt->root->height && bt->root->num_children == 1) {
struct btree_page *old = bt->root;
bt->root = *PAGE_PTR(old, 0);
free(old);
}
return 0;
}
int btree_get(btree_t bt, const void *key, void *data)
{
const struct btree_def *def = bt->def;
struct btree_page *p = bt->root;
int h;
check_btree(bt);
if (!key)
return btree_select(bt, NULL, BTREE_READ, NULL, data);
for (h = bt->root->height; h >= 0; h--) {
int s = find_key_le(p, key);
if (h) {
assert (s >= 0 && s < p->num_children);
p = *PAGE_PTR(p, s);
} else if (s >= 0 && !def->compare(key, PAGE_KEY(p, s))) {
memcpy(data, PAGE_DATA(p, s), def->data_size);
return 0;
}
}
return 1;
}
int btree_select(btree_t bt, const void *key, btree_selmode_t mode,
void *key_ret, void *data_ret)
{
const struct btree_def *def = bt->def;
check_btree(bt);
switch (mode) {
case BTREE_CLEAR:
bt->slot[0] = -1;
break;
case BTREE_READ:
break;
case BTREE_EXACT:
case BTREE_LE:
if (!trace_path(bt, key, bt->path, bt->slot) &&
mode == BTREE_EXACT)
bt->slot[0] = -1;
break;
case BTREE_FIRST:
cursor_first(bt);
break;
case BTREE_NEXT:
cursor_next(bt);
break;
}
/* Return the data at the cursor */
if (bt->slot[0] >= 0) {
if (key_ret)
memcpy(key_ret,
PAGE_KEY(bt->path[0], bt->slot[0]),
def->key_size);
if (data_ret)
memcpy(data_ret,
PAGE_DATA(bt->path[0], bt->slot[0]),
def->data_size);
return 0;
}
return 1;
}
|