1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
/*
* fec.c -- forward error correction based on Vandermonde matrices
* 980624
* (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
*
* Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
* Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
* The following parameter defines how many bits are used for
* field elements. The code supports any value from 2 to 16
* but fastest operation is achieved with 8 bit elements
* This is the only parameter you may want to change.
*/
#ifndef GF_BITS
#define GF_BITS 8 /* code over GF(2**GF_BITS) - change to suit */
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "libfec.h"
/*
* stuff used for testing purposes only
*/
#ifdef TEST
#define DEB(x)
#define DDB(x) x
#define DEBUG 0 /* minimal debugging */
#ifdef MSDOS
#include <time.h>
struct timeval {
unsigned long ticks;
};
#define gettimeofday(x, dummy) { (x)->ticks = clock() ; }
#define DIFF_T(a,b) (1+ 1000000*(a.ticks - b.ticks) / CLOCKS_PER_SEC )
#else /* typically, unix systems */
#include <sys/time.h>
#define DIFF_T(a,b) \
(1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )
#endif
#define TICK(t) \
{struct timeval x ; \
gettimeofday(&x, NULL) ; \
t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \
}
#define TOCK(t) \
{ unsigned long t1 ; TICK(t1) ; \
if (t1 < t) t = 256000000 + t1 - t ; \
else t = t1 - t ; \
if (t == 0) t = 1 ;}
unsigned long ticks[10]; /* vars for timekeeping */
#else
#define DEB(x)
#define DDB(x)
#define TICK(x)
#define TOCK(x)
#endif /* TEST */
/*
* You should not need to change anything beyond this point.
* The first part of the file implements linear algebra in GF.
*
* gf is the type used to store an element of the Galois Field.
* Must constain at least GF_BITS bits.
*
* Note: unsigned char will work up to GF(256) but int seems to run
* faster on the Pentium. We use int whenever have to deal with an
* index, since they are generally faster.
*/
#if (GF_BITS < 2 && GF_BITS >16)
#error "GF_BITS must be 2 .. 16"
#endif
#if (GF_BITS <= 8)
typedef unsigned char gf;
#else
typedef unsigned short gf;
#endif
#define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha */
/*
* Primitive polynomials - see Lin & Costello, Appendix A,
* and Lee & Messerschmitt, p. 453.
*/
static const char *allPp[] = { /* GF_BITS polynomial */
NULL, /* 0 no code */
NULL, /* 1 no code */
"111", /* 2 1+x+x^2 */
"1101", /* 3 1+x+x^3 */
"11001", /* 4 1+x+x^4 */
"101001", /* 5 1+x^2+x^5 */
"1100001", /* 6 1+x+x^6 */
"10010001", /* 7 1 + x^3 + x^7 */
"101110001", /* 8 1+x^2+x^3+x^4+x^8 */
"1000100001", /* 9 1+x^4+x^9 */
"10010000001", /* 10 1+x^3+x^10 */
"101000000001", /* 11 1+x^2+x^11 */
"1100101000001", /* 12 1+x+x^4+x^6+x^12 */
"11011000000001", /* 13 1+x+x^3+x^4+x^13 */
"110000100010001", /* 14 1+x+x^6+x^10+x^14 */
"1100000000000001", /* 15 1+x+x^15 */
"11010000000010001" /* 16 1+x+x^3+x^12+x^16 */
};
/*
* To speed up computations, we have tables for logarithm, exponent
* and inverse of a number. If GF_BITS <= 8, we use a table for
* multiplication as well (it takes 64K, no big deal even on a PDA,
* especially because it can be pre-initialized an put into a ROM!),
* otherwhise we use a table of logarithms.
* In any case the macro gf_mul(x,y) takes care of multiplications.
*/
static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */
static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */
static gf inverse[GF_SIZE+1]; /* inverse of field elem. */
/* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) */
/*
* modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
* without a slow divide.
*/
static inline gf
modnn(int x)
{
while (x >= GF_SIZE) {
x -= GF_SIZE;
x = (x >> GF_BITS) + (x & GF_SIZE);
}
return x;
}
#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
/*
* gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much
* faster to use a multiplication table.
*
* USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
* many numbers by the same constant. In this case the first
* call sets the constant, and others perform the multiplications.
* A value related to the multiplication is held in a local variable
* declared with USE_GF_MULC . See usage in addmul1().
*/
#if (GF_BITS <= 8)
static gf gf_mul_table[GF_SIZE + 1][GF_SIZE + 1];
#define gf_mul(x,y) gf_mul_table[x][y]
#define USE_GF_MULC register gf * __gf_mulc_
#define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]
#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
static void
init_mul_table(void)
{
int i, j;
for (i=0; i< GF_SIZE+1; i++)
for (j=0; j< GF_SIZE+1; j++)
gf_mul_table[i][j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
for (j=0; j< GF_SIZE+1; j++)
gf_mul_table[0][j] = gf_mul_table[j][0] = 0;
}
#else /* GF_BITS > 8 */
static inline gf
gf_mul(x,y)
{
if ( (x) == 0 || (y)==0 ) return 0;
return gf_exp[gf_log[x] + gf_log[y] ] ;
}
#define init_mul_table()
#define USE_GF_MULC register gf * __gf_mulc_
#define GF_MULC0(c) __gf_mulc_ = &gf_exp[ gf_log[c] ]
#define GF_ADDMULC(dst, x) { if (x) dst ^= __gf_mulc_[ gf_log[x] ] ; }
#endif
/*
* Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m]
* Lookup tables:
* index->polynomial form gf_exp[] contains j= \alpha^i;
* polynomial form -> index form gf_log[ j = \alpha^i ] = i
* \alpha=x is the primitive element of GF(2^m)
*
* For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple
* multiplication of two numbers can be resolved without calling modnn
*/
/*
* i use malloc so many times, it is easier to put checks all in
* one place.
*/
static void *
my_malloc(int sz, const char *err_string)
{
void *p = malloc( sz );
if (p == NULL) {
fprintf(stderr, "-- malloc failure allocating %s\n", err_string);
exit(1) ;
}
return p ;
}
#define NEW_GF_MATRIX(rows, cols) \
(gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )
/*
* initialize the data structures used for computations in GF.
*/
static void
generate_gf(void)
{
int i;
gf mask;
const char *Pp = allPp[GF_BITS] ;
mask = 1; /* x ** 0 = 1 */
gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */
/*
* first, generate the (polynomial representation of) powers of \alpha,
* which are stored in gf_exp[i] = \alpha ** i .
* At the same time build gf_log[gf_exp[i]] = i .
* The first GF_BITS powers are simply bits shifted to the left.
*/
for (i = 0; i < GF_BITS; i++, mask <<= 1 ) {
gf_exp[i] = mask;
gf_log[gf_exp[i]] = i;
/*
* If Pp[i] == 1 then \alpha ** i occurs in poly-repr
* gf_exp[GF_BITS] = \alpha ** GF_BITS
*/
if ( Pp[i] == '1' )
gf_exp[GF_BITS] ^= mask;
}
/*
* now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
* compute its inverse.
*/
gf_log[gf_exp[GF_BITS]] = GF_BITS;
/*
* Poly-repr of \alpha ** (i+1) is given by poly-repr of
* \alpha ** i shifted left one-bit and accounting for any
* \alpha ** GF_BITS term that may occur when poly-repr of
* \alpha ** i is shifted.
*/
mask = 1 << (GF_BITS - 1 ) ;
for (i = GF_BITS + 1; i < GF_SIZE; i++) {
if (gf_exp[i - 1] >= mask)
gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
else
gf_exp[i] = gf_exp[i - 1] << 1;
gf_log[gf_exp[i]] = i;
}
/*
* log(0) is not defined, so use a special value
*/
gf_log[0] = GF_SIZE ;
/* set the extended gf_exp values for fast multiply */
for (i = 0 ; i < GF_SIZE ; i++)
gf_exp[i + GF_SIZE] = gf_exp[i] ;
/*
* again special cases. 0 has no inverse. This used to
* be initialized to GF_SIZE, but it should make no difference
* since noone is supposed to read from here.
*/
inverse[0] = 0 ;
inverse[1] = 1;
for (i=2; i<=GF_SIZE; i++)
inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
}
/*
* Various linear algebra operations that i use often.
*/
/*
* addmul() computes dst[] = dst[] + c * src[]
* This is used often, so better optimize it! Currently the loop is
* unrolled 16 times, a good value for 486 and pentium-class machines.
* The case c=0 is also optimized, whereas c=1 is not. These
* calls are unfrequent in my typical apps so I did not bother.
*
* Note that gcc on
*/
#define addmul(dst, src, c, sz) \
if (c != 0) addmul1(dst, src, c, sz)
#define UNROLL 16 /* 1, 4, 8, 16 */
static void
addmul1(gf *dst1, gf *src1, gf c, int sz)
{
USE_GF_MULC ;
register gf *dst = dst1, *src = src1 ;
gf *lim = &dst[sz - UNROLL + 1] ;
GF_MULC0(c) ;
#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */
for (; dst < lim ; dst += UNROLL, src += UNROLL ) {
GF_ADDMULC( dst[0] , src[0] );
GF_ADDMULC( dst[1] , src[1] );
GF_ADDMULC( dst[2] , src[2] );
GF_ADDMULC( dst[3] , src[3] );
#if (UNROLL > 4)
GF_ADDMULC( dst[4] , src[4] );
GF_ADDMULC( dst[5] , src[5] );
GF_ADDMULC( dst[6] , src[6] );
GF_ADDMULC( dst[7] , src[7] );
#endif
#if (UNROLL > 8)
GF_ADDMULC( dst[8] , src[8] );
GF_ADDMULC( dst[9] , src[9] );
GF_ADDMULC( dst[10] , src[10] );
GF_ADDMULC( dst[11] , src[11] );
GF_ADDMULC( dst[12] , src[12] );
GF_ADDMULC( dst[13] , src[13] );
GF_ADDMULC( dst[14] , src[14] );
GF_ADDMULC( dst[15] , src[15] );
#endif
}
#endif
lim += UNROLL - 1 ;
for (; dst < lim; dst++, src++ ) /* final components */
GF_ADDMULC( *dst , *src );
}
/*
* computes C = AB where A is n*k, B is k*m, C is n*m
*/
static void
matmul(gf *a, gf *b, gf *c, int n, int k, int m)
{
int row, col, i ;
for (row = 0; row < n ; row++) {
for (col = 0; col < m ; col++) {
gf *pa = &a[ row * k ];
gf *pb = &b[ col ];
gf acc = 0 ;
for (i = 0; i < k ; i++, pa++, pb += m )
acc ^= gf_mul( *pa, *pb ) ;
c[ row * m + col ] = acc ;
}
}
}
#ifdef DEBUG
/*
* returns 1 if the square matrix is identiy
* (only for test)
*/
static int
is_identity(gf *m, int k)
{
int row, col ;
for (row=0; row<k; row++)
for (col=0; col<k; col++)
if ( (row==col && *m != 1) ||
(row!=col && *m != 0) )
return 0 ;
else
m++ ;
return 1 ;
}
#endif /* debug */
/*
* invert_mat() takes a matrix and produces its inverse
* k is the size of the matrix.
* (Gauss-Jordan, adapted from Numerical Recipes in C)
* Return non-zero if singular.
*/
DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)
static int
invert_mat(gf *src, int k)
{
gf c, *p ;
int irow, icol, row, col, i, ix ;
int error = 1 ;
int *indxc = my_malloc(k*sizeof(int), "indxc");
int *indxr = my_malloc(k*sizeof(int), "indxr");
int *ipiv = my_malloc(k*sizeof(int), "ipiv");
gf *id_row = NEW_GF_MATRIX(1, k);
gf *temp_row = NEW_GF_MATRIX(1, k);
memset(id_row, '\0', k*sizeof(gf));
DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ )
/*
* ipiv marks elements already used as pivots.
*/
for (i = 0; i < k ; i++)
ipiv[i] = 0 ;
for (col = 0; col < k ; col++) {
gf *pivot_row ;
/*
* Zeroing column 'col', look for a non-zero element.
* First try on the diagonal, if it fails, look elsewhere.
*/
irow = icol = -1 ;
if (ipiv[col] != 1 && src[col*k + col] != 0) {
irow = col ;
icol = col ;
goto found_piv ;
}
for (row = 0 ; row < k ; row++) {
if (ipiv[row] != 1) {
for (ix = 0 ; ix < k ; ix++) {
DEB( pivloops++ ; )
if (ipiv[ix] == 0) {
if (src[row*k + ix] != 0) {
irow = row ;
icol = ix ;
goto found_piv ;
}
} else if (ipiv[ix] > 1) {
fprintf(stderr, "singular matrix\n");
goto fail ;
}
}
}
}
if (icol == -1) {
fprintf(stderr, "XXX pivot not found!\n");
goto fail ;
}
found_piv:
++(ipiv[icol]) ;
/*
* swap rows irow and icol, so afterwards the diagonal
* element will be correct. Rarely done, not worth
* optimizing.
*/
if (irow != icol) {
for (ix = 0 ; ix < k ; ix++ ) {
SWAP( src[irow*k + ix], src[icol*k + ix], gf) ;
}
}
indxr[col] = irow ;
indxc[col] = icol ;
pivot_row = &src[icol*k] ;
c = pivot_row[icol] ;
if (c == 0) {
fprintf(stderr, "singular matrix 2\n");
goto fail ;
}
if (c != 1 ) { /* otherwhise this is a NOP */
/*
* this is done often , but optimizing is not so
* fruitful, at least in the obvious ways (unrolling)
*/
DEB( pivswaps++ ; )
c = inverse[ c ] ;
pivot_row[icol] = 1 ;
for (ix = 0 ; ix < k ; ix++ )
pivot_row[ix] = gf_mul(c, pivot_row[ix] );
}
/*
* from all rows, remove multiples of the selected row
* to zero the relevant entry (in fact, the entry is not zero
* because we know it must be zero).
* (Here, if we know that the pivot_row is the identity,
* we can optimize the addmul).
*/
id_row[icol] = 1;
if (memcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
for (p = src, ix = 0 ; ix < k ; ix++, p += k ) {
if (ix != icol) {
c = p[icol] ;
p[icol] = 0 ;
addmul(p, pivot_row, c, k );
}
}
}
id_row[icol] = 0;
} /* done all columns */
for (col = k-1 ; col >= 0 ; col-- ) {
if (indxr[col] <0 || indxr[col] >= k)
fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
else if (indxc[col] <0 || indxc[col] >= k)
fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
else
if (indxr[col] != indxc[col] ) {
for (row = 0 ; row < k ; row++ ) {
SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ;
}
}
}
error = 0 ;
fail:
free(indxc);
free(indxr);
free(ipiv);
free(id_row);
free(temp_row);
return error ;
}
/*
* fast code for inverting a vandermonde matrix.
* XXX NOTE: It assumes that the matrix
* is not singular and _IS_ a vandermonde matrix. Only uses
* the second column of the matrix, containing the p_i's.
*
* Algorithm borrowed from "Numerical recipes in C" -- sec.2.8, but
* largely revised for my purposes.
* p = coefficients of the matrix (p_i)
* q = values of the polynomial (known)
*/
static int
invert_vdm(gf *src, int k)
{
int i, j, row, col ;
gf *b, *c, *p;
gf t, xx ;
if (k == 1) /* degenerate case, matrix must be p^0 = 1 */
return 0 ;
/*
* c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1
* b holds the coefficient for the matrix inversion
*/
c = NEW_GF_MATRIX(1, k);
b = NEW_GF_MATRIX(1, k);
p = NEW_GF_MATRIX(1, k);
for ( j=1, i = 0 ; i < k ; i++, j+=k ) {
c[i] = 0 ;
p[i] = src[j] ; /* p[i] */
}
/*
* construct coeffs. recursively. We know c[k] = 1 (implicit)
* and start P_0 = x - p_0, then at each stage multiply by
* x - p_i generating P_i = x P_{i-1} - p_i P_{i-1}
* After k steps we are done.
*/
c[k-1] = p[0] ; /* really -p(0), but x = -x in GF(2^m) */
for (i = 1 ; i < k ; i++ ) {
gf p_i = p[i] ; /* see above comment */
for (j = k-1 - ( i - 1 ) ; j < k-1 ; j++ )
c[j] ^= gf_mul( p_i, c[j+1] ) ;
c[k-1] ^= p_i ;
}
for (row = 0 ; row < k ; row++ ) {
/*
* synthetic division etc.
*/
xx = p[row] ;
t = 1 ;
b[k-1] = 1 ; /* this is in fact c[k] */
for (i = k-2 ; i >= 0 ; i-- ) {
b[i] = c[i+1] ^ gf_mul(xx, b[i+1]) ;
t = gf_mul(xx, t) ^ b[i] ;
}
for (col = 0 ; col < k ; col++ )
src[col*k + row] = gf_mul(inverse[t], b[col] );
}
free(c) ;
free(b) ;
free(p) ;
return 0 ;
}
static int fec_initialized = 0 ;
static void
init_fec(void)
{
TICK(ticks[0]);
generate_gf();
TOCK(ticks[0]);
DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);)
TICK(ticks[0]);
init_mul_table();
TOCK(ticks[0]);
DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);)
fec_initialized = 1 ;
}
/*
* This section contains the proper FEC encoding/decoding routines.
* The encoding matrix is computed starting with a Vandermonde matrix,
* and then transforming it into a systematic matrix.
*/
#define FEC_MAGIC 0xFECC0DEC
struct fec_parms {
unsigned long magic ;
int k, n ; /* parameters of the code */
gf *enc_matrix ;
} ;
#define COMP_FEC_MAGIC(fec) \
(((FEC_MAGIC ^ (fec)->k) ^ (fec)->n) ^ (unsigned long)((fec)->enc_matrix))
void
fec_free(struct fec_parms *p)
{
if (p==NULL || p->magic != COMP_FEC_MAGIC(p)) {
fprintf(stderr, "bad parameters to fec_free\n");
return ;
}
free(p->enc_matrix);
free(p);
}
/*
* create a new encoder, returning a descriptor. This contains k,n and
* the encoding matrix.
*/
struct fec_parms *
fec_new(int k, int n)
{
int row, col ;
gf *p, *tmp_m ;
struct fec_parms *retval ;
if (fec_initialized == 0)
init_fec();
if (k > GF_SIZE + 1 || n > GF_SIZE + 1 || k > n ) {
fprintf(stderr, "Invalid parameters k %d n %d GF_SIZE %d\n",
k, n, GF_SIZE );
return NULL ;
}
retval = my_malloc(sizeof(struct fec_parms), "new_code");
retval->k = k ;
retval->n = n ;
retval->enc_matrix = NEW_GF_MATRIX(n, k);
retval->magic = COMP_FEC_MAGIC(retval);
tmp_m = NEW_GF_MATRIX(n, k);
/*
* fill the matrix with powers of field elements, starting from 0.
* The first row is special, cannot be computed with exp. table.
*/
tmp_m[0] = 1 ;
for (col = 1; col < k ; col++)
tmp_m[col] = 0 ;
for (p = tmp_m + k, row = 0; row < n-1 ; row++, p += k) {
for ( col = 0 ; col < k ; col ++ )
p[col] = gf_exp[modnn(row*col)];
}
/*
* quick code to build systematic matrix: invert the top
* k*k vandermonde matrix, multiply right the bottom n-k rows
* by the inverse, and construct the identity matrix at the top.
*/
TICK(ticks[3]);
invert_vdm(tmp_m, k); /* much faster than invert_mat */
matmul(tmp_m + k*k, tmp_m, retval->enc_matrix + k*k, n - k, k, k);
/*
* the upper matrix is I so do not bother with a slow multiply
*/
memset(retval->enc_matrix, '\0', k*k*sizeof(gf) );
for (p = retval->enc_matrix, col = 0 ; col < k ; col++, p += k+1 )
*p = 1 ;
free(tmp_m);
TOCK(ticks[3]);
DDB(fprintf(stderr, "--- %ld us to build encoding matrix\n",
ticks[3]);)
DEB(pr_matrix(retval->enc_matrix, n, k, "encoding_matrix");)
return retval ;
}
/*
* fec_encode accepts as input pointers to n data packets of size sz,
* and produces as output a packet pointed to by fec, computed
* with index "index".
*/
void
fec_encode(struct fec_parms *code, gf *src[], gf *fec, int index, int sz)
{
int i, k = code->k ;
gf *p ;
if (GF_BITS > 8)
sz /= 2 ;
if (index < k)
memcpy(fec, src[index], sz*sizeof(gf) ) ;
else if (index < code->n) {
p = &(code->enc_matrix[index*k] );
memset(fec, '\0', sz*sizeof(gf));
for (i = 0; i < k ; i++)
addmul(fec, src[i], p[i], sz ) ;
} else
fprintf(stderr, "Invalid index %d (max %d)\n",
index, code->n - 1 );
}
void fec_encode_linear(struct fec_parms *code, gf *src, gf *fec, int index, int sz)
{
int i, k = code->k ;
gf *p ;
if (GF_BITS > 8)
sz /= 2 ;
if (index < k)
memcpy(fec, src + (index * sz), sz*sizeof(gf) ) ;
else if (index < code->n) {
p = &(code->enc_matrix[index*k] );
memset(fec, '\0', sz*sizeof(gf));
for (i = 0; i < k ; i++)
addmul(fec, src + (i * sz), p[i], sz ) ;
} else
fprintf(stderr, "Invalid index %d (max %d)\n",
index, code->n - 1 );
}
/*
* shuffle move src packets in their position
*/
static int
shuffle(gf *pkt[], int index[], int k)
{
int i;
for ( i = 0 ; i < k ; ) {
if (index[i] >= k || index[i] == i)
i++ ;
else {
/*
* put pkt in the right position (first check for conflicts).
*/
int c = index[i] ;
if (index[c] == c) {
DEB(fprintf(stderr, "\nshuffle, error at %d\n", i);)
return 1 ;
}
SWAP(index[i], index[c], int) ;
SWAP(pkt[i], pkt[c], gf *) ;
}
}
DEB( /* just test that it works... */
for ( i = 0 ; i < k ; i++ ) {
if (index[i] < k && index[i] != i) {
fprintf(stderr, "shuffle: after\n");
for (i=0; i<k ; i++) fprintf(stderr, "%3d ", index[i]);
fprintf(stderr, "\n");
return 1 ;
}
}
)
return 0 ;
}
/*
* build_decode_matrix constructs the encoding matrix given the
* indexes. The matrix must be already allocated as
* a vector of k*k elements, in row-major order
*/
static gf *
build_decode_matrix(struct fec_parms *code, int index[])
{
int i , k = code->k ;
gf *p, *matrix = NEW_GF_MATRIX(k, k);
TICK(ticks[9]);
for (i = 0, p = matrix ; i < k ; i++, p += k ) {
#if 1 /* this is simply an optimization, not very useful indeed */
if (index[i] < k) {
memset(p, '\0', k*sizeof(gf) );
p[i] = 1 ;
} else
#endif
if (index[i] < code->n )
memcpy(p, &(code->enc_matrix[index[i]*k]), k*sizeof(gf) );
else {
fprintf(stderr, "decode: invalid index %d (max %d)\n",
index[i], code->n - 1 );
free(matrix) ;
return NULL ;
}
}
TICK(ticks[9]);
if (invert_mat(matrix, k)) {
free(matrix);
matrix = NULL ;
}
TOCK(ticks[9]);
return matrix ;
}
/*
* fec_decode receives as input a vector of packets, the indexes of
* packets, and produces the correct vector as output.
*
* Input:
* code: pointer to code descriptor
* pkt: pointers to received packets. They are modified
* to store the output packets (in place)
* index: pointer to packet indexes (modified)
* sz: size of each packet
*/
int
fec_decode(struct fec_parms *code, gf *pkt[], int index[], int sz)
{
gf *m_dec ;
gf **new_pkt ;
int row, col , k = code->k ;
if (GF_BITS > 8)
sz /= 2 ;
if (shuffle(pkt, index, k)) /* error if true */
return 1 ;
m_dec = build_decode_matrix(code, index);
if (m_dec == NULL)
return 1 ; /* error */
/*
* do the actual decoding
*/
new_pkt = my_malloc (k * sizeof (gf * ), "new pkt pointers" );
for (row = 0 ; row < k ; row++ ) {
if (index[row] >= k) {
new_pkt[row] = my_malloc (sz * sizeof (gf), "new pkt buffer" );
memset(new_pkt[row], '\0', sz * sizeof(gf) ) ;
for (col = 0 ; col < k ; col++ )
addmul(new_pkt[row], pkt[col], m_dec[row*k + col], sz) ;
}
}
/*
* move pkts to their final destination
*/
for (row = 0 ; row < k ; row++ ) {
if (index[row] >= k) {
memcpy(pkt[row], new_pkt[row], sz*sizeof(gf));
free(new_pkt[row]);
}
}
free(new_pkt);
free(m_dec);
return 0;
}
/*********** end of FEC code -- beginning of test code ************/
#if (TEST || DEBUG)
void
test_gf(void)
{
int i ;
/*
* test gf tables. Sufficiently tested...
*/
for (i=0; i<= GF_SIZE; i++) {
if (gf_exp[gf_log[i]] != i)
fprintf(stderr, "bad exp/log i %d log %d exp(log) %d\n",
i, gf_log[i], gf_exp[gf_log[i]]);
if (i != 0 && gf_mul(i, inverse[i]) != 1)
fprintf(stderr, "bad mul/inv i %d inv %d i*inv(i) %d\n",
i, inverse[i], gf_mul(i, inverse[i]) );
if (gf_mul(0,i) != 0)
fprintf(stderr, "bad mul table 0,%d\n",i);
if (gf_mul(i,0) != 0)
fprintf(stderr, "bad mul table %d,0\n",i);
}
}
#endif /* TEST */
|