1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014 Bootlin
*
* Authors: Boris Brezillon <boris.brezillon@collabora.com>
* Miquel Raynal <miquel.raynal@bootlin.com>
*
* Overview:
* This utility manually flips specified bits in a NAND flash.
*/
#define PROGRAM_NAME "nandflipbits"
#include <mtd/mtd-user.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <libmtd.h>
#include <getopt.h>
#include <stdio.h>
#include <fcntl.h>
#include "common.h"
struct bit_flip {
uint32_t block;
uint64_t offset;
int bit;
bool done;
};
static void usage(int status)
{
fprintf(status == EXIT_SUCCESS ? stdout : stderr,
"Usage: "PROGRAM_NAME" [OPTIONS] <device> <bit>@<address> [<bit>@<address>...]\n"
"\n"
" Test ECC engines, see if they match the specified correction strength:\n"
" * Reads in raw mode the data from an MTD device\n"
" * Flips the indicated bit(s)\n"
" * Write it back in raw mode.\n"
"\n"
" -h, --help Display this help and exit\n"
" -o, --oob Provided addresses take OOB area into account\n"
" -q, --quiet Don't display progress messages\n"
"\n"
);
exit(status);
}
static const char *mtd_device;
static bool quiet = false;
static bool oob_mode = false;
static struct bit_flip *bits_to_flip;
static int nbits_to_flip = 0;
static void process_options(int argc, char * const argv[])
{
int error = 0;
int i;
for (;;) {
int option_index = 0;
static const char short_options[] = "hoq";
static const struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"oob", no_argument, 0, 'o'},
{"quiet", no_argument, 0, 'q'},
{0, 0, 0, 0},
};
int c = getopt_long(argc, argv, short_options,
long_options, &option_index);
if (c == EOF)
break;
switch (c) {
case 'q':
quiet = true;
break;
case 'o':
oob_mode = true;
break;
case 'h':
usage(EXIT_SUCCESS);
break;
case '?':
default:
error++;
break;
}
}
argc -= optind;
argv += optind;
/*
* There must be at least the MTD device node path argument remaining
* and a list of minimum one 'bits-to-flip'.
*/
if (argc < 2 || error)
usage(EXIT_FAILURE);
/* MTD device */
mtd_device = argv[0];
argc--;
argv++;
/* Parse the bits to flip */
nbits_to_flip = argc;
bits_to_flip = malloc(sizeof(*bits_to_flip) * nbits_to_flip);
if (!bits_to_flip)
exit(EXIT_FAILURE);
for (i = 0; i < nbits_to_flip; i++) {
struct bit_flip *bit_to_flip = &bits_to_flip[i];
char *desc = argv[i];
bit_to_flip->bit = strtol(desc, &desc, 0);
if (errno || bit_to_flip->bit > 7)
goto free_bits;
if (!desc || *desc++ != '@')
goto free_bits;
bit_to_flip->offset = strtol(desc, &desc, 0);
if (errno)
goto free_bits;
}
return;
free_bits:
free(bits_to_flip);
fprintf(stderr, "Invalid bit description\n");
exit(EXIT_FAILURE);
}
int main(int argc, char **argv)
{
struct mtd_dev_info mtd;
libmtd_t mtd_desc;
uint64_t mtdlen;
uint32_t pagelen, pages_per_blk, blklen;
uint8_t *buffer;
int fd, ret, i;
process_options(argc, argv);
/* Open the libmtd */
mtd_desc = libmtd_open();
if (!mtd_desc) {
fprintf(stderr, "Cannot initialize libmtd\n");
ret = EXIT_FAILURE;
goto free_bits;
}
/* Fill in MTD device capability structure */
ret = mtd_get_dev_info(mtd_desc, mtd_device, &mtd);
if (ret < 0) {
fprintf(stderr, "Cannot retrieve MTD device information\n");
ret = EXIT_FAILURE;
goto close_lib;
}
/* Verify we are using a NAND device */
if (mtd.type != MTD_NANDFLASH && mtd.type != MTD_MLCNANDFLASH) {
fprintf(stderr, "%s is not a NAND flash\n", mtd_device);
ret = EXIT_FAILURE;
goto close_lib;
}
/* Open the MTD device */
fd = open(mtd_device, O_RDWR);
if (fd < 0) {
fprintf(stderr, "Cannot open %s\n", mtd_device);
ret = EXIT_FAILURE;
goto close_lib;
}
/* Select raw mode */
ret = ioctl(fd, MTDFILEMODE, MTD_FILE_MODE_RAW);
if (ret) {
fprintf(stderr, "Unavailable raw mode ioctl\n");
ret = EXIT_FAILURE;
goto close_fd;
}
pagelen = mtd.min_io_size + (oob_mode ? mtd.oob_size : 0);
pages_per_blk = mtd.eb_size / mtd.min_io_size;
blklen = pages_per_blk * pagelen;
mtdlen = (uint64_t)blklen * (uint64_t)mtd.eb_cnt;
buffer = malloc((mtd.min_io_size + mtd.oob_size) * pages_per_blk);
if (!buffer) {
ret = EXIT_FAILURE;
goto close_fd;
}
for (i = 0; i < nbits_to_flip; i++) {
int page;
if (bits_to_flip[i].offset >= mtdlen) {
fprintf(stderr, "Invalid byte offset %" PRId64
" (max %" PRId64 ")\n",
bits_to_flip[i].offset, mtdlen);
ret = EXIT_FAILURE;
goto free_buf;
}
bits_to_flip[i].block = bits_to_flip[i].offset / blklen;
bits_to_flip[i].offset %= blklen;
page = bits_to_flip[i].offset / pagelen;
bits_to_flip[i].offset = (page *
(mtd.min_io_size + mtd.oob_size)) +
(bits_to_flip[i].offset % pagelen);
}
while (1) {
struct bit_flip *bit_to_flip = NULL;
int blkoffs;
int bufoffs;
/* Look for the next bitflip to insert */
for (i = 0; i < nbits_to_flip; i++) {
if (bits_to_flip[i].done == false) {
bit_to_flip = &bits_to_flip[i];
break;
}
}
if (!bit_to_flip) {
ret = EXIT_SUCCESS;
break;
}
/* Read the content of all the pages of a block */
blkoffs = 0;
bufoffs = 0;
for (i = 0; i < pages_per_blk; i++) {
ret = mtd_read(&mtd, fd, bit_to_flip->block, blkoffs,
buffer + bufoffs, mtd.min_io_size);
if (ret) {
fprintf(stderr, "MTD read failure\n");
ret = EXIT_FAILURE;
goto free_buf;
}
bufoffs += mtd.min_io_size;
ret = mtd_read_oob(mtd_desc, &mtd, fd,
(unsigned long long)bit_to_flip->block * mtd.eb_size +
blkoffs,
mtd.oob_size, buffer + bufoffs);
if (ret) {
fprintf(stderr, "MTD OOB read failure\n");
ret = EXIT_FAILURE;
goto free_buf;
}
bufoffs += mtd.oob_size;
blkoffs += mtd.min_io_size;
}
/* Flip all bits that are located in this particular block */
for (i = 0; i < nbits_to_flip; i++) {
unsigned char val, mask;
if (bits_to_flip[i].block != bit_to_flip->block)
continue;
mask = 1 << bits_to_flip[i].bit;
val = buffer[bits_to_flip[i].offset] & mask;
if (val)
buffer[bits_to_flip[i].offset] &= ~mask;
else
buffer[bits_to_flip[i].offset] |= mask;
}
/* Erase the block */
ret = mtd_erase(mtd_desc, &mtd, fd, bit_to_flip->block);
if (ret) {
fprintf(stderr, "MTD erase failure\n");
ret = EXIT_FAILURE;
goto free_buf;
}
/* Rewrite the pages, still in raw mode, with the bitflips */
blkoffs = 0;
bufoffs = 0;
for (i = 0; i < pages_per_blk; i++) {
ret = mtd_write(mtd_desc, &mtd, fd, bit_to_flip->block,
blkoffs, buffer + bufoffs, mtd.min_io_size,
buffer + bufoffs + mtd.min_io_size,
mtd.oob_size,
MTD_OPS_RAW);
if (ret) {
fprintf(stderr, "MTD write failure\n");
ret = EXIT_FAILURE;
goto free_buf;
}
blkoffs += mtd.min_io_size;
bufoffs += mtd.min_io_size + mtd.oob_size;
}
/* Mark the added bitflips as done */
for (i = 0; i < nbits_to_flip; i++) {
if (bits_to_flip[i].block == bit_to_flip->block)
bits_to_flip[i].done = true;
}
}
free_buf:
free(buffer);
close_fd:
close(fd);
close_lib:
libmtd_close(mtd_desc);
free_bits:
free(bits_to_flip);
exit(ret);
}
|