1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
module ode.odemath;
import ode.common;
/+
/*
* macro to access elements i,j in an NxM matrix A, independent of the
* matrix storage convention.
*/
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
/*
* 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
* p and q indexes apart respectively. dDOT() means dDOT11.
* in C++ we could use function templates to get all the versions of these
* functions - but on some compilers this will result in sub-optimal code.
*/
#define dDOTpq(a,b,p,q) ((a)[0]*(b)[0] + (a)[p]*(b)[q] + (a)[2*(p)]*(b)[2*(q)])
#define dDOT(a,b) dDOTpq(a,b,1,1)
#define dDOT13(a,b) dDOTpq(a,b,1,3)
#define dDOT31(a,b) dDOTpq(a,b,3,1)
#define dDOT33(a,b) dDOTpq(a,b,3,3)
#define dDOT14(a,b) dDOTpq(a,b,1,4)
#define dDOT41(a,b) dDOTpq(a,b,4,1)
#define dDOT44(a,b) dDOTpq(a,b,4,4)
/*
* cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
* and `c' are spaced p, q and r indexes apart respectively.
* dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
* +=, -= etc to get other effects.
*/
#define dCROSS(a,op,b,c) \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]);
#define dCROSSpqr(a,op,b,c,p,q,r) \
(a)[ 0] op ((b)[ q]*(c)[2*r] - (b)[2*q]*(c)[ r]); \
(a)[ p] op ((b)[2*q]*(c)[ 0] - (b)[ 0]*(c)[2*r]); \
(a)[2*p] op ((b)[ 0]*(c)[ r] - (b)[ q]*(c)[ 0]);
#define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
#define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
#define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
#define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
#define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
#define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
#define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
/*
* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
* A is stored by rows, and has `skip' elements per row. the matrix is
* assumed to be already zero, so this does not write zero elements!
* if (plus,minus) is (+,-) then a positive version will be written.
* if (plus,minus) is (-,+) then a negative version will be written.
*/
#define dCROSSMAT(A,a,skip,plus,minus) \
(A)[1] = minus (a)[2]; \
(A)[2] = plus (a)[1]; \
(A)[(skip)+0] = plus (a)[2]; \
(A)[(skip)+2] = minus (a)[0]; \
(A)[2*(skip)+0] = minus (a)[1]; \
(A)[2*(skip)+1] = plus (a)[0];
/*
* compute the distance between two 3-vectors
*/
#define dDISTANCE(a,b) \
(dSqrt( ((a)[0]-(b)[0])*((a)[0]-(b)[0]) + ((a)[1]-(b)[1])*((a)[1]-(b)[1]) + ((a)[2]-(b)[2])*((a)[2]-(b)[2]) ))
/*
* special case matrix multipication, with operator selection
*/
#define dMULTIPLYOP0_331(A,op,B,C) \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B+4),(C)); \
(A)[2] op dDOT((B+8),(C));
#define dMULTIPLYOP1_331(A,op,B,C) \
(A)[0] op dDOT41((B),(C)); \
(A)[1] op dDOT41((B+1),(C)); \
(A)[2] op dDOT41((B+2),(C));
#define dMULTIPLYOP0_133(A,op,B,C) \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2));
#define dMULTIPLYOP0_333(A,op,B,C) \
(A)[0] op dDOT14((B),(C)); \
(A)[1] op dDOT14((B),(C+1)); \
(A)[2] op dDOT14((B),(C+2)); \
(A)[4] op dDOT14((B+4),(C)); \
(A)[5] op dDOT14((B+4),(C+1)); \
(A)[6] op dDOT14((B+4),(C+2)); \
(A)[8] op dDOT14((B+8),(C)); \
(A)[9] op dDOT14((B+8),(C+1)); \
(A)[10] op dDOT14((B+8),(C+2));
#define dMULTIPLYOP1_333(A,op,B,C) \
(A)[0] op dDOT44((B),(C)); \
(A)[1] op dDOT44((B),(C+1)); \
(A)[2] op dDOT44((B),(C+2)); \
(A)[4] op dDOT44((B+1),(C)); \
(A)[5] op dDOT44((B+1),(C+1)); \
(A)[6] op dDOT44((B+1),(C+2)); \
(A)[8] op dDOT44((B+2),(C)); \
(A)[9] op dDOT44((B+2),(C+1)); \
(A)[10] op dDOT44((B+2),(C+2));
#define dMULTIPLYOP2_333(A,op,B,C) \
(A)[0] op dDOT((B),(C)); \
(A)[1] op dDOT((B),(C+4)); \
(A)[2] op dDOT((B),(C+8)); \
(A)[4] op dDOT((B+4),(C)); \
(A)[5] op dDOT((B+4),(C+4)); \
(A)[6] op dDOT((B+4),(C+8)); \
(A)[8] op dDOT((B+8),(C)); \
(A)[9] op dDOT((B+8),(C+4)); \
(A)[10] op dDOT((B+8),(C+8));
#define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
#define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
#define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
#define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
#define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
#define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
#define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
#define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
#define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
#define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
#define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
#define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
+/
extern(C):
/*
* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
*/
void dNormalize3 (ref dVector3 a);
void dNormalize4 (ref dVector4 a);
/*
* given a unit length "normal" vector n, generate vectors p and q vectors
* that are an orthonormal basis for the plane space perpendicular to n.
* i.e. this makes p,q such that n,p,q are all perpendicular to each other.
* q will equal n x p. if n is not unit length then p will be unit length but
* q wont be.
*/
void dPlaneSpace (ref dVector3 n, ref dVector3 p, ref dVector3 q);
|