File: engine_sensor_test.cc

package info (click to toggle)
mujoco 2.2.2-3.2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 39,796 kB
  • sloc: ansic: 28,947; cpp: 28,897; cs: 14,241; python: 10,465; xml: 5,104; sh: 93; makefile: 34
file content (441 lines) | stat: -rw-r--r-- 14,346 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
// Copyright 2021 DeepMind Technologies Limited
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Tests for engine/engine_sensor.c.

#include <array>
#include <cstddef>
#include <cstdio>
#include <string>

#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <mujoco/mjmodel.h>
#include <mujoco/mjtnum.h>
#include <mujoco/mujoco.h>
#include "src/engine/engine_support.h"
#include "src/engine/engine_util_blas.h"
#include "src/engine/engine_util_spatial.h"
#include "test/fixture.h"

namespace mujoco {
namespace {

const mjtNum tol = 1e-14;  // nearness tolerance for floating point numbers

// returns as a vector the measured values from sensor with index `id`
static std::vector<mjtNum> GetSensor(const mjModel* model,
                                     const mjData* data,
                                     int id) {
  return std::vector<mjtNum>(
      data->sensordata + model->sensor_adr[id],
      data->sensordata + model->sensor_adr[id] + model->sensor_dim[id]);
}

using ::testing::Pointwise;
using ::testing::DoubleNear;
using ::testing::StrEq;

using SensorTest = MujocoTest;

// --------------------- test sensor disableflag  -----------------------------

// hand-picked positions and orientations for simple expected values
TEST_F(SensorTest, DisableSensors) {
  constexpr char xml[] = R"(
  <mujoco>
    <sensor>
      <clock/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);

  // before calling anything, check that sensors are initialised to 0
  EXPECT_EQ(data->sensordata[0], 0.0);

  // call mj_step, mj_step1, expect clock to be incremented by timestep
  mj_step(model, data);
  mj_step1(model, data);
  EXPECT_EQ(data->sensordata[0], model->opt.timestep);

  // disable sensors, call mj_step, mj_step1, expect clock to not increment
  model->opt.disableflags |= mjDSBL_SENSOR;
  mj_step(model, data);
  mj_step1(model, data);
  EXPECT_EQ(data->time, 2*model->opt.timestep);
  EXPECT_EQ(data->sensordata[0], model->opt.timestep);

  // re-enable sensors, call mj_step, mj_step1, expect clock to match time
  model->opt.disableflags = 0;
  mj_step(model, data);
  mj_step1(model, data);
  EXPECT_EQ(data->time, data->sensordata[0]);

  mj_deleteData(data);
  mj_deleteModel(model);
}

// --------------------- test relative frame sensors  --------------------------

using RelativeFrameSensorTest = MujocoTest;

// hand-picked positions and orientations for simple expected values
TEST_F(RelativeFrameSensorTest, ReferencePosMat) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body name="reference" pos="3 -4 0" xyaxes="4 3 0 -3 4 0"/>
      <site name="object" pos="4 3 0" xyaxes="3 -4 0 4 3 0"/>
    </worldbody>
    <sensor>
      <framepos objtype="site" objname="object"
                reftype="xbody" refname="reference"/>
      <framexaxis objtype="site" objname="object"
                  reftype="xbody" refname="reference"/>
      <frameyaxis objtype="site" objname="object"
                  reftype="xbody" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);
  mj_forward(model, data);

  // compare actual and expected values
  std::vector pos = GetSensor(model, data, 0);
  EXPECT_THAT(pos, Pointwise(DoubleNear(tol), {5, 5, 0}));

  std::vector xaxis = GetSensor(model, data, 1);
  EXPECT_THAT(xaxis, Pointwise(DoubleNear(tol), {0, -1, 0}));

  std::vector yaxis = GetSensor(model, data, 2);
  EXPECT_THAT(yaxis, Pointwise(DoubleNear(tol), {1, 0, 0}));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// orientations given by quaternion and by orientation matrix are identical
TEST_F(RelativeFrameSensorTest, ReferenceQuatMat) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <site name="reference" euler="10 20 30"/>
      <site name="object" euler="20 40 60"/>
    </worldbody>
    <sensor>
      <framexaxis objtype="site" objname="object"
                  reftype="site" refname="reference"/>
      <frameyaxis objtype="site" objname="object"
                  reftype="site" refname="reference"/>
      <framezaxis objtype="site" objname="object"
                  reftype="site" refname="reference"/>
      <framequat objtype="site" objname="object"
                  reftype="site" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);

  // call mj_forward and convert orientation matrix to quaternion
  mj_forward(model, data);
  mjtNum mat[9], converted_quat[4];
  mju_transpose(mat, data->sensordata, 3, 3);
  mju_mat2Quat(converted_quat, mat);

  // compare quaternion sensor and quat derived from orientation matrix
  std::vector quat = GetSensor(model, data, 3);
  EXPECT_THAT(quat, Pointwise(DoubleNear(tol), converted_quat));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// compare global frame and initially co-located relative frame on same body
TEST_F(RelativeFrameSensorTest, ReferencePosMatQuat) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body>
        <freejoint/>
        <site name="reference"/>
        <geom name="object" euler="20 40 60" pos="1 2 3" size="1"/>
      </body>
    </worldbody>
    <sensor>
      <framepos objtype="geom" objname="object"/>
      <framexaxis objtype="geom" objname="object"/>
      <frameyaxis objtype="geom" objname="object"/>
      <framezaxis objtype="geom" objname="object"/>
      <framequat objtype="geom" objname="object"/>
      <framepos objtype="geom" objname="object"
                reftype="site" refname="reference"/>
      <framexaxis objtype="geom" objname="object"
                  reftype="site" refname="reference"/>
      <frameyaxis objtype="geom" objname="object"
                  reftype="site" refname="reference"/>
      <framezaxis objtype="geom" objname="object"
                  reftype="site" refname="reference"/>
      <framequat objtype="geom" objname="object"
                  reftype="site" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  constexpr int nsensordata = 32;
  ASSERT_EQ(model->nsensordata, nsensordata);
  mjData* data = mj_makeData(model);

  // call mj_forward, save global sensors (colocated with reference frame)
  mj_forward(model, data);
  std::vector expected_values(data->sensordata, data->sensordata+nsensordata/2);

  // set qpos to arbitrary values, call mj_forward
  for (int i=0; i < 7; i++) {
    data->qpos[i] = i+1;
  }
  mj_forward(model, data);

  // note that in the loop above the quat is unnormalized, but that's ok,
  // quaternions are automatically normalized in place:
  EXPECT_NEAR(mju_norm(data->qpos+3, 4), 1.0, tol);

  // get values from relative sensors after moving the object
  std::vector actual_values(data->sensordata+nsensordata/2,
                            data->sensordata+nsensordata);

  // object and reference have moved together, we expect values to not unchange
  EXPECT_THAT(actual_values, Pointwise(DoubleNear(tol), expected_values));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// hand-picked velocities and orientations for simple expected values
TEST_F(RelativeFrameSensorTest, FrameVelLinearFixed) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body xyaxes="1 -1 0 1 1 0">
        <joint type="slide" axis="1 0 0"/>
        <geom name="reference" size="1"/>
      </body>
      <body>
        <joint type="slide" axis="1 0 0"/>
        <geom name="object" size="1"/>
      </body>
    </worldbody>
    <sensor>
      <framelinvel objtype="geom" objname="object"
                   reftype="geom" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);
  data->qvel[0] = mju_sqrt(2);
  data->qvel[1] = 1;
  mj_forward(model, data);

  // compare to expected values
  std::vector linvel = GetSensor(model, data, 0);
  const mjtNum expected_linvel[3] = {-mju_sqrt(0.5), mju_sqrt(0.5), 0};
  EXPECT_THAT(linvel, Pointwise(DoubleNear(tol), expected_linvel));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// object and reference in the same body, expect angular velocites to be zero
TEST_F(RelativeFrameSensorTest, FrameVelAngFixed) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body>
        <joint type="hinge" axis="1 2 3"/>
        <geom name="reference" size="1" pos="1 2 3"/>
        <geom name="object" size="1" pos="-3 -2 -1"/>
      </body>
    </worldbody>
    <sensor>
      <frameangvel objtype="geom" objname="object"
                   reftype="geom" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);

  // set joint velocities and call forward dynamics
  data->qvel[0] = 1;
  mj_forward(model, data);

  // obj and ref rotate together, relative angular velocites should be zero
  std::vector angvel = GetSensor(model, data, 0);
  EXPECT_THAT(angvel, Pointwise(DoubleNear(tol), {0, 0, 0}));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// object and reference rotate on the same global axis
TEST_F(RelativeFrameSensorTest, FrameVelAngOpposing) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body xyaxes="0 -1 0 1 0 0">
        <joint type="hinge" axis="0 1 0"/>
        <geom name="reference" size="1"/>
      </body>
      <body>
        <joint type="hinge" axis="1 0 0"/>
        <geom name="object" size="1" pos="-3 -2 -1"/>
      </body>
    </worldbody>
    <sensor>
      <frameangvel objtype="geom" objname="object"
                   reftype="geom" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);

  // set joint velocities and call forward dynamics
  data->qvel[0] = -1;
  data->qvel[1] = 1;
  mj_forward(model, data);

  // obj and ref rotate on same axis, we can just difference the velocities
  std::vector angvel = GetSensor(model, data, 0);
  const mjtNum expected_angvel[3] = {0, data->qvel[1]-data->qvel[0], 0};
  EXPECT_THAT(angvel, Pointwise(DoubleNear(tol), expected_angvel));

  mj_deleteData(data);
  mj_deleteModel(model);
}

// two arbitrary frames, compare velocity sensors and fin-diffed positions
TEST_F(RelativeFrameSensorTest, FrameVelGeneral) {
  constexpr char xml[] = R"(
  <mujoco>
    <worldbody>
      <body pos="1 2 3" euler="10 20 30">
        <joint type="hinge" axis="2 3 4"/>
        <geom name="reference" size="1" pos="0 1 2"/>
      </body>
      <body pos="-3 -2 -1" euler="20 40 60">
        <joint type="hinge" axis="2 3 4"/>
        <geom name="object" size="1" pos="1 2 3"/>
      </body>
    </worldbody>
    <sensor>
      <framepos objtype="geom" objname="object"
                reftype="geom" refname="reference"/>
      <framequat objtype="geom" objname="object"
                 reftype="geom" refname="reference"/>
      <framelinvel objtype="geom" objname="object"
                   reftype="geom" refname="reference"/>
      <frameangvel objtype="geom" objname="object"
                   reftype="geom" refname="reference"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);
  mjtNum dt = 1e-6;  // timestep used for finite differencing

  // set (arbitrary) joint velocities and call forward dynamics
  data->qvel[0] = 1;
  data->qvel[1] = -1;
  mj_forward(model, data);

  // save measured linear and angular velocities as vectors
  std::vector linvel = GetSensor(model, data, 2);
  std::vector angvel = GetSensor(model, data, 3);

  // save current position, quaternion as arrays
  mjtNum pos0[3], quat0[4];
  mju_copy3(pos0, data->sensordata);
  mju_copy4(quat0, data->sensordata+3);

  // explicit Euler integration with small dt
  mju_addToScl(data->qpos, data->qvel, dt, 2);

  // call mj_forward again, save new position and quaternion
  mj_forward(model, data);
  mjtNum pos1[3], quat1[4];
  mju_copy3(pos1, data->sensordata);
  mju_copy4(quat1, data->sensordata+3);

  // compute expected linear velocities using finite differencing
  mjtNum linvel_findiff[3];
  mju_sub3(linvel_findiff, pos1, pos0);
  mju_scl3(linvel_findiff, linvel_findiff, 1/dt);

  // compute expected angular velocities using finite differencing
  mjtNum dquat[4], angvel_findiff[3];
  mju_negQuat(quat0, quat0);
  mju_mulQuat(dquat, quat1, quat0);
  mju_quat2Vel(angvel_findiff, dquat, dt);

  // compare analytic and finite-differenced relative velocities
  EXPECT_THAT(linvel, Pointwise(DoubleNear(10*dt), linvel_findiff));
  EXPECT_THAT(angvel, Pointwise(DoubleNear(10*dt), angvel_findiff));


  mj_deleteData(data);
  mj_deleteModel(model);
}

// ------------------------- general sensor tests  -----------------------------
using SensorTest = MujocoTest;

// test clock sensor
TEST_F(SensorTest, Clock) {
  constexpr char xml[] = R"(
  <mujoco>
    <option timestep="1e-3"/>
    <sensor>
      <clock/>
      <clock name="clampedclock" cutoff="3e-3"/>
    </sensor>
  </mujoco>
  )";
  mjModel* model = LoadModelFromString(xml, 0, 0);
  mjData* data = mj_makeData(model);

  // call step 4 times, checking that clock works as expected
  for (int i=0; i<5; i++) {
    mj_step(model, data);
    mj_step1(model, data); // update values of position-based sensors
    EXPECT_EQ(data->sensordata[0], data->time);
    EXPECT_EQ(data->sensordata[1], mju_min(data->time, 3e-3));
  }

  // chack names
  const char* name0 = mj_id2name(model, mjOBJ_SENSOR, 0);
  EXPECT_EQ(name0, nullptr);
  const char* name1 = mj_id2name(model, mjOBJ_SENSOR, 1);
  EXPECT_THAT(name1, StrEq("clampedclock"));

  mj_deleteData(data);
  mj_deleteModel(model);
}

}  // namespace
}  // namespace mujoco