1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
attach(NULL, name = "CheckExEnv")
assign(".CheckExEnv", as.environment(2), pos = length(search())) # base
## This plot.new() patch has no effect yet for persp();
## layout() & filled.contour() are now ok
assign("plot.new", function() { .Internal(plot.new())
pp <- par(c("mfg","mfcol","oma","mar"))
if(all(pp$mfg[1:2] == c(1, pp$mfcol[2]))) {
outer <- (oma4 <- pp$oma[4]) > 0; mar4 <- pp$mar[4]
mtext(paste("help(",..nameEx,")"), side = 4,
line = if(outer)max(1, oma4 - 1) else min(1, mar4 - 1),
outer = outer, adj=1, cex= .8, col="orchid")} },
env = .CheckExEnv)
assign("cleanEx", function(env = .GlobalEnv) {
rm(list = ls(envir = env, all.names = TRUE), envir = env)
RNGkind("Wichmann-Hill", "Kinderman-Ramage")
set.seed(290875)
# assign(".Random.seed", c(0,rep(7654,3)), pos=1)
},
env = .CheckExEnv)
assign("..nameEx", "__{must remake R-ex/*.R}__", env = .CheckExEnv) #-- for now
assign("ptime", proc.time(), env = .CheckExEnv)
postscript("multcomp-Examples.ps")
assign("par.postscript", par(no.readonly = TRUE), env = .CheckExEnv)
options(contrasts = c(unordered = "contr.treatment", ordered = "contr.poly"))
library('multcomp')
cleanEx(); ..nameEx <- "MultipleEndpoints"
###--- >>> `MultipleEndpoints' <<<----- Multiple Endpoints Data Set
## alias help(MultipleEndpoints)
##___ Examples ___:
cleanEx(); ..nameEx <- "angina"
###--- >>> `angina' <<<----- Dose Response Data Set
## alias help(angina)
##___ Examples ___:
load("angina.rda")
# perform a dose-response analysis using simultaneous confidence
# intervals for Willimas' contrasts
summary(simint(response~dose, data=angina, alternative="greater",
type="Williams"))
# compute now adjusted p-values for McDermott's test on trend
summary(simtest(response~dose, data=angina, type="McDermott",
alternative="greater",ttype="logical"))
## Keywords: 'datasets'.
cleanEx(); ..nameEx <- "cholesterol"
### * cholesterol
### Name: cholesterol
### Title: Cholesterol Reduction Data Set
### Aliases: cholesterol
### Keywords: datasets
### ** Examples
data(cholesterol)
# adjusted p-values for all-pairwise comparisons in a one-way layout
# tests for restricted combinations
simtest(response ~ trt, data=cholesterol, type="Tukey",
ttype="logical")
# adjusted p-values all-pairwise comparisons in a one-way layout
# (tests for free combinations -> p-values will be larger)
simtest(response ~ trt, data=cholesterol, type="Tukey",
ttype="free")
# the following lines illustrate the basic principles of
# parameter estimation used in all functions in this package
# and how the low-level functions can be used with raw parameter
# estimates.
# the full design matrix (with reduced rank!)
x <- cbind(1,
matrix(c(rep(c(rep(1,10), rep(0,50)), 4),
rep(1, 10)), nrow = 50))
y <- cholesterol$response
xpxi <- multcomp:::MPinv(t(x) %*% x)$MPinv
rankx <- sum(diag((xpxi %*% (t(x) %*% x))))
n <- nrow(x)
p <- ncol(x)
df <- round(n-rankx)
# parameter estimates and their correlation
parm <- xpxi %*% t(x) %*% y
mse <- t(y-x %*% parm) %*% (y-x %*% parm)/df
covm <- mse[1,1]*xpxi
# the contrast matrix
contrast <- contrMat(table(cholesterol$trt), type="Tukey")
# use the work-horse directly (and add zero column for the intercept)
csimint(estpar=parm, df=df, covm=covm, cmatrix=cbind(0, contrast))
csimtest(estpar=parm, df=df, covm=covm, cmatrix=cbind(0, contrast),
ttype="logical")
cleanEx(); ..nameEx <- "contrMat"
## Keywords: 'datasets'.
data(detergent)
N <- rep(2, 5)
# BIBD: prepare the contrast matrix = all-pair comparisons for
# the 5 levels of detergent
C <- contrMat(N, type="Tukey")
# the additional 10 columns of are for the 10 blocks
C <- cbind( matrix(0, ncol=10, nrow=10), C )
# numerate the contrasts
colnames(C) <- NULL
rownames(C) <- paste("C", 1:nrow(C), sep="")
# adjusted p-values
summary(simtest(plates ~ block+detergent, data=detergent,
cmatrix = list(detergent = contrMat(table(detergent$detergent), type = "Tukey"))))
# whichf="detergent", type="Tukey", ttype="logical")) # , cmatrix=C))
## Keywords: 'datasets'.
cleanEx(); ..nameEx <- "recovery"
###--- >>> `recovery' <<<----- Recovery Time Data Set
## alias help(recovery)
##___ Examples ___:
data(recovery)
# one-sided simultaneous confidence intervals for Dunnett
# in the one-way layout
simint(minutes~blanket, data=recovery, conf.level=0.9,
alternative="less",eps=0.0001)
# same results, but specifying the contrast matrix by hand
C <- c(0, 0, 0, -1, -1, -1, 1, 0, 0, 0, 1, 0, 0, 0, 1)
C <- matrix(C, ncol=5)
# numerate the contrasts
rownames(C) <- paste("C", 1:nrow(C), sep="")
test <- simint(minutes~blanket, data=recovery, conf.level=0.9,
alternative="less",eps=0.0001, cmatrix=C[,-1])
print(test)
# same results, but more detailed information using the summary method
summary(test)
## Keywords: 'datasets'.
cleanEx(); ..nameEx <- "simint"
###--- >>> `simint' <<<----- Simultaneous Intervals
## alias help(simint)
## alias help(simint.default)
## alias help(simint.formula)
##___ Examples ___:
data(recovery)
# one-sided simultaneous confidence intervals for Dunnett
# in the one-way layout
summary(simint(minutes~blanket, data=recovery, type="Dunnett", conf.level=0.9,
alternative="less",eps=0.0001))
## Keywords: 'htest'.
cleanEx(); ..nameEx <- "simtest"
###--- >>> `simtest' <<<----- Simultaneous comparisons
## alias help(simtest.default)
## alias help(simtest.formula)
## alias help(simtest)
##___ Examples ___:
data(cholesterol)
# adjusted p-values for all-pairwise comparisons in a onw-way
# layout (tests for restricted combinations)
simtest(response ~ trt, data=cholesterol, type="Tukey", ttype="logical")
## Keywords: 'htest'.
cleanEx(); ..nameEx <- "tire"
###--- >>> `tire' <<<----- Tire Wear Data Set
## alias help(tire)
##___ Examples ___:
#tire <- read.csv("tire.csv", header = TRUE)
#C <- c(0,1,-1,0,10,-10)
#for ( x in seq(15,70,5) ) { C <- rbind( C,c(0,1,-1,0,x,-x) ) }
## numerate the contrasts
#rownames(C) <- paste("C", 1:nrow(C), sep="")
#
## simultaneous confidence intervals of two regression functions
#summary(simint(cost ~ make + mph + make:mph, data=tire,
# cmatrix=C, eps=0.001, whichf = NULL))
## Keywords: 'datasets'.
cleanEx(); ..nameEx <- "waste"
###--- >>> `waste' <<<----- Industrial Waste Data Set
## alias help(waste)
##___ Examples ___:
data(waste)
summary(aov(waste ~ envir + temp + envir*temp, data=waste))
#summary(simint(waste ~ envir:temp, data=waste,
# type="Tetrade", eps = 0.01))
## Keywords: 'datasets'.
cat("Time elapsed: ", proc.time() - get("ptime", env = .CheckExEnv),"\n")
dev.off(); quit('no')
|