1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
### compact letter displays
cld <- function(object, ...)
UseMethod("cld")
cld.glht <- function(object, level = 0.05, decreasing = FALSE, ...)
cld(summary(object), level = level, decreasing = decreasing)
extr <- function(object) {
stopifnot(object$type == "Tukey")
mf <- model.frame(object$model)
if (!is.null(attr(mf, "terms"))) {
tm <- attr(mf, "terms")
} else {
tm <- try(terms(object$model))
if (inherits(tm, "try-error")) stop("no terms component found")
}
### <FIXME> not very nice
if(inherits(object$model, "lme")){
mf <- get_all_vars(tm, mf)
}
### </FIXME>
covar <- (length(attr(tm, "term.labels")) > 1)
y <- mf[[1L]]
yname <- colnames(mf)[[1L]]
stopifnot(length(object$focus) == 1)
x <- mf[[object$focus]]
xname <- object$focus
K <- contrMat(table(x), type = "Tukey")
comps <- cbind(apply(K, 1, function(k) levels(x)[k == 1]),
apply(K, 1, function(k) levels(x)[k == -1]))
f <- if (inherits(object$model, "coxph")) predict else fitted
lp <- f(object$model)
ret <- list(y = y, yname = yname,
x = x, xname = xname,
weights = model.weights(mf),
lp = lp, covar = covar, comps = comps)
return(ret)
}
cld.summary.glht <- function(object, level = 0.05, decreasing = FALSE, ...) {
stopifnot(inherits(object, "glht"))
ret <- extr(object)
signif <- (object$test$pvalues < level)
# Order the levels according to its mean
# Tidy up: ret$y[1:length(ret$x)]], cox models concatenates a vector of live/dead
# I think this way is easier than to deal with gsub later and it's more general
lvl_order <- levels(ret$x)[order(tapply(as.numeric(ret$y)[1:length(ret$x)], ret$x, mean))]
# names(signif) <- gsub("\\s", "", rownames(object$linfct))
ret$signif <- signif
ret$mcletters <- insert_absorb(signif, decreasing = decreasing,
comps = ret$comps, lvl_order = lvl_order,
levels.x=levels(ret$x), ...)
# start edit
ret$mcletters$Letters <- ret$mcletters$Letters[levels(ret$x)]
ret$mcletters$monospacedLetters <- ret$mcletters$monospacedLetters[levels(ret$x)]
ret$mcletters$LetterMatrix <- ret$mcletters$LetterMatrix[levels(ret$x),]
# end edit
class(ret) <- "cld"
ret
}
cld.confint.glht <- function(object, decreasing = FALSE, ...) {
stopifnot(inherits(object, "glht"))
ret <- extr(object)
### significant, if confidence interval does not contains 0
signif <- !(object$confint[, "lwr"] < 0 & object$confint[, "upr"] > 0)
# Tidy up: ret$y[1:length(ret$x)]], cox models concatenates a vector of live/dead
# I think this way is easier than to deal with gsub later and it's more general
lvl_order <- levels(ret$x)[order(tapply(as.numeric(ret$y)[1:length(ret$x)], ret$x, mean))]
# names(signif) <- gsub("\\s", "", rownames(object$linfct))
ret$signif <- signif
ret$mcletters <- insert_absorb(signif, decreasing = decreasing,
comps = ret$comps, lvl_order = lvl_order,
levels.x=levels(ret$x), ...)
# start edit
ret$mcletters$Letters <- ret$mcletters$Letters[levels(ret$x)]
ret$mcletters$monospacedLetters <- ret$mcletters$monospacedLetters[levels(ret$x)]
ret$mcletters$LetterMatrix <- ret$mcletters$LetterMatrix[levels(ret$x),]
# end edit
class(ret) <- "cld"
ret
}
print.cld <- function(x, ...)
print(x$mcletters$Letters)
plot.cld <- function(x, type = c("response", "lp"), ...) {
mcletters <- x$mcletters
### ms = mono-spaced
msletters <- mcletters$monospacedLetters
### v = vertical
vletters <- sapply(msletters,
function(x) paste(strsplit(x, "")[[1]], "\n", collapse = ""))
vletters <- vletters[gsub(" ", "", levels(x$x))]
msletters <- msletters[gsub(" ", "", levels(x$x))]
type <- match.arg(type)
dat <- x[c("x", "y", "lp")]
if (is.null(x$weights)) {
dat$weights <- rep(1, NROW(x$y))
} else {
dat$weights <- x$weights
}
dat <- as.data.frame(dat)
xn <- x$xname
yn <- x$yname
if (!is.null(list(...)$xlab)) xn <- list(...)$xlab
if (!is.null(list(...)$ylab)) yn <- list(...)$ylab
if (x$covar || type == "lp") {
### boxplot to make use of "..." argument
yn <- "linear predictor"
if (!is.null(list(...)$ylab)) yn <- list(...)$ylab
boxplot(lp ~ x, data = dat, xlab = xn, ylab = "linear predictor", ...)
axis(3, at = 1:nlevels(dat$x), labels = vletters)
} else {
if (is.integer(dat$y)) dat$y <- as.numeric(dat$y)
switch(class(dat$y),
"numeric" = {
### boxplot to make use of "..." argument
boxplot(y ~ x, data = dat, xlab = xn, ylab = yn, ...)
axis(3, at = 1:nlevels(dat$x), labels = vletters)
},
"factor" = {
at <- xtabs(weights ~ x, data = dat) / sum(dat$weights)
at <- cumsum(at) - at / 2
mosaicplot(xtabs(weights ~ x + y, data = dat), main = NULL,
xlab = xn, ylab = yn, ...)
axis(3, at = at, labels = vletters, tick = FALSE)
},
"Surv" = {
plot(survfit(y ~ x, data = dat), lty = 1:nlevels(dat$x), ...)
nc <- nchar(levels(dat$x))
spaces <- unlist(lapply( max(nc)-nc, function(x) return(paste( rep(" ",x) ,collapse=""))))
# old.par <- par(family="mono")
legend("topright", lty = 1:nlevels(dat$x),
legend = paste(levels(dat$x), spaces, ": ", msletters, sep=""),
...)
# par(old.par)
})
}
}
# Function implements the insert-absorb (sweep) heuristic of Piepho 2004:
# "An Algorithm for a Letter-Based Representation of All-Pairwise Comparisons"
#
# x ... vector of logicals indicating significant comparisons with hyphenated
# names e.g. A-B, treatmentA-treatmentB, ...
# Letters ... a set of user defined letters { default is Letters=c(letters, LETTERS) }
# separator ... a separating character used to produce a sufficiently large set of
# characters for a compact letter display (default is separator=".") in case
# the number of letters required exceeds the number of letters available
# Decreasing ... Inverse the order of the letters
# levels.x ... levels of the grouping variable
insert_absorb <- function( x, Letters=c(letters, LETTERS), separator=".", decreasing = FALSE,
comps = NULL, lvl_order, levels.x){
obj_x <- deparse(substitute(x))
if (is.null(comps)) {
namx <- names(x)
namx <- gsub(" ", "", names(x))
if(length(namx) != length(x))
stop("Names required for ", obj_x)
split_names <- strsplit(namx, "-")
stopifnot( sapply(split_names, length) == 2 )
comps <- t(as.matrix(as.data.frame(split_names)))
}
rownames(comps) <- names(x)
lvls <- lvl_order
n <- length(lvls)
lmat <- array(TRUE, dim=c(n,1), dimnames=list(lvls, NULL) )
if( sum(x) == 0 ){ # no differences
ltrs <- rep(get_letters(1, Letters=Letters, separator=separator), length(lvls) )
names(ltrs) <- lvls
colnames(lmat) <- ltrs[1]
msl <- ltrs
ret <- list(Letters=ltrs, monospacedLetters=msl, LetterMatrix=lmat)
class(ret) <- "multcompLetters"
return(ret)
}
else{
signifs <- comps[x,,drop=FALSE]
absorb <- function(m){
for(j in 1:(ncol(m)-1)){
for(k in (j+1):ncol(m)){
if( all(m[which(m[,k]),k] & m[which(m[,k]),j]) ){ # column k fully contained in column j
m <- m[,-k, drop=FALSE]
return(absorb(m))
}
else if( all(m[which(m[,j]),k] & m[which(m[,j]),j]) ){ # column j fully contained in column k
m <- m[,-j, drop=FALSE]
return(absorb(m))
}
}
}
return(m)
}
for( i in 1:nrow(signifs) ){ # insert
tmpcomp <- signifs[i,]
wassert <- which(lmat[tmpcomp[1],] & lmat[tmpcomp[2],]) # which columns wrongly assert nonsignificance
if(any(wassert)){
tmpcols <- lmat[,wassert,drop=FALSE]
tmpcols[tmpcomp[2],] <- FALSE
lmat[tmpcomp[1],wassert] <- FALSE
lmat <- cbind(lmat, tmpcols)
colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters,
separator=separator)
if(ncol(lmat) > 1){ # absorb columns if possible
lmat <- absorb(lmat)
colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters,
separator=separator )
}
}
}
}
lmat <- lmat[levels.x,] # consider order of levels.x which will be applied later on ensuring that argument decreasing correclty functions (AS 2022-10-14)
lmat <- lmat[,order(apply(lmat, 2, sum))]
lmat <- sweepLetters(lmat) # 1st sweeping
lmat <- lmat[,names(sort(apply(lmat,2, function(x) return(min(which(x)))), decreasing = decreasing))] # reorder columns
colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator)
lmat <- lmat[,order(apply(lmat, 2, sum))]
lmat <- sweepLetters(lmat) # 2nd sweeping
lmat <- lmat[,names(sort(apply(lmat,2, function(x) return(min(which(x)))), decreasing = decreasing))] # reorder columns
colnames(lmat) <- get_letters( ncol(lmat), Letters=Letters, separator=separator)
ltrs <- apply(lmat,1,function(x) return(paste(names(x)[which(x)], sep="", collapse="") ) )
msl <- matrix(ncol=ncol(lmat), nrow=nrow(lmat)) # prepare monospaced letters
for( i in 1:nrow(lmat) ){
msl[i,which(lmat[i,])] <- colnames(lmat)[which(lmat[i,])]
absent <- which(!lmat[i,])
if( length(absent) < 2 ){
if( length(absent) == 0 )
next
else{
msl[i,absent] <- paste( rep(" ", nchar(colnames(lmat)[absent])), collapse="" )
}
}
else{
msl[i,absent] <- unlist( lapply( sapply( nchar(colnames(lmat)[absent]),
function(x) return(rep( " ",x)) ),
paste, collapse="") )
}
}
msl <- apply(msl, 1, paste, collapse="")
names(msl) <- rownames(lmat)
ret <- list( Letters=ltrs, monospacedLetters=msl, LetterMatrix=lmat,
aLetters = Letters, aseparator = separator )
class(ret) <- "multcompLetters"
return(ret)
}
# All redundant letters are swept out without altering the information within a LetterMatrix.
#
# mat ... a LetterMatrix as produced by function insert_absorb()
# start.col ... either a single integer specifying the column to start with or a vector
# of max. length equal to ncol(mat) specifying the column order to be used.
# Letters ... a set of user defined letters { default is Letters=c(letters, LETTERS) }
# separator ... a separating character used to produce a sufficiently large set of
# characters for a compact letter display (default is separator=".") in case
# the number of letters required exceeds the number of letters available
sweepLetters <- function(mat, start.col=1, Letters=c(letters, LETTERS), separator="."){
stopifnot( all(start.col %in% 1:ncol(mat)) )
locked <- matrix(rep(0,ncol(mat)*nrow(mat)), ncol=ncol(mat)) # 1 indicates that another letter dependes on this entry
cols <- 1:ncol(mat)
cols <- cols[c( start.col, cols[-start.col] )]
if( any(is.na(cols) ) )
cols <- cols[-which(is.na(cols))]
for( i in cols){
tmp <- matrix(rep(0,ncol(mat)*nrow(mat)), ncol=ncol(mat))
tmp[which(mat[,i]),] <- mat[which(mat[,i]),] # get items of those rows which are TRUE in col "i"
one <- which(tmp[,i]==1)
if( all(apply(tmp[,-i,drop=FALSE], 1, function(x) return( any(x==1) ))) ){ # there is at least one row "l" where mat[l,i] is the only item which is TRUE i.e. no item can be removed in this column
next
}
for( j in one ){ # over all 1's
if( locked[j,i] == 1 ){ # item is locked
next
}
chck <- 0
lck <- list()
for( k in one ){
if( j==k ){
next
}
else{ # pair j-k
rows <- tmp[c(j,k),]
dbl <- rows[1,] & rows[2,]
hit <- which(dbl)
hit <- hit[-which(hit==i)]
dbl <- rows[1,-i,drop=FALSE] & rows[2,-i,drop=FALSE]
if( any(dbl) ){
chck <- chck + 1
lck[[chck]] <- list(c(j,hit[length(hit)]), c(k,hit[length(hit)])) # record items which have to be locked, use last column if multiple hits
}
}
}
if( (chck == (length(one)-1)) && chck != 0 ){ # item is redundant
for( k in 1:length(lck) ){ # lock items
locked[ lck[[k]][[1]][1], lck[[k]][[1]][2] ] <- 1
locked[ lck[[k]][[2]][1], lck[[k]][[2]][2] ] <- 1
}
mat[j,i] <- FALSE # delete redundant entry
}
}
if(all(mat[,i]==FALSE)){ # delete column where each entry is FALSE and restart
mat <- mat[,-i,drop=FALSE]
colnames(mat) <- get_letters( ncol(mat), Letters=Letters, separator=separator)
return(sweepLetters(mat, Letters=Letters, separator=separator))
}
}
onlyF <- apply(mat, 2, function(x) return(all(!x)))
if( any(onlyF) ){ # There are columns with just FALSE entries
mat <- mat[,-which(onlyF),drop=FALSE]
colnames(mat) <- get_letters( ncol(mat), Letters=Letters, separator=separator)
}
return( mat )
}
# Create a set of letters for a letter display. If "n" exceeds the number of letters
# specified in "Letters", they are recycled with one or more separating character(s)
# preceding each recycled letter.
# e.g. get_letters(10, Letters=letters[1:4]) produces: "a" "b" "c" "d" ".a" ".b" ".c" ".d" "..a" "..b"
#
# n ... number of letters
# Letters ... the set of characters to be used
# separator ... a character to be used as separator e.g.
# n=5, Letters=c("a","b") => "a", "b", ".a", ".b", "..a"
get_letters <- function( n, Letters=c(letters, LETTERS), separator="." ){
n.complete <- floor(n / length(Letters)) # number of complete sets of Letters
n.partial <- n %% length(Letters) # number of additional Letters
lett <- character()
separ=""
if( n.complete > 0 ){
for( i in 1:n.complete ){
lett <- c(lett, paste(separ, Letters, sep="") )
separ <- paste( separ, separator, sep="" )
}
}
if(n.partial > 0 )
lett <- c(lett, paste(separ, Letters[1:n.partial], sep="") )
return(lett)
}
|