1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
library("multcomp")
library("sandwich")
#######################################################
### Source code for simulations presented in
### A Robust Procedure for Comparing Multiple Means
### under Heterscedasticity in Unbalanced Designs
### by E. Herberich, J. Sikorski, and T. Hothorn
### PLoS ONE 2010
#######################################################
###############################################
# Simulation setup for normally distributed data
###############################################
###################################################################################
### data generating process of group membership for n observations and four groups
### f: parameter controling the relation of group sizes
###################################################################################
dgpX <- function(n, f){
n1 <- n + f
n2 <- n + f * 2 * n
n3 <- n + f * 3 * n
n4 <- n + f * 4 * n
x1 <- as.factor(sample(rep(1:4, c(n1, n2, n3, n4)), replace = FALSE))
X <- data.frame(X1 = x1)
return(X)
}
#################################################################################
### data generating process of normally distributed data in four groups
### f: parameter controling the relation of group sizes
### sigma: standard deviation of the errors
#################################################################################
dgp_aov <- function(n, f, sigma, beta){
X <- dgpX(n, f)
Xm <- model.matrix(~ - 1 + X1, data=X)
stopifnot(ncol(Xm) == length(beta))
lp <- Xm %*% beta
epsilon <- rnorm(length(X$X1), 0, 1)
sigma_i <- sigma[as.numeric(X$X1)]
Y <- lp + epsilon * sigma_i
data.frame(Y=Y, X)
}
#################################################################################
### Fit of an ANOVA model
#################################################################################
fit_aov <- function(data)
aov(Y ~ X1, data=data)
##########################################################################################################################
### Simulations in the unbalanced ANOVA model
### Comparison of OLS and HC3 covariance estimation for the global test
### Comparison of Tukey-Kramer test and max-t test with HC3 covariance estimation for all pairwise comparisons of groups
### r: variing group effect for calculation of power
##########################################################################################################################
sim <- function(nsim, dgp, fit, beta0, r, n, f, sigma, K){
P <- matrix(0, ncol=2, nrow=nsim, byrow=TRUE)
P_HC <- matrix(0, ncol=2, nrow=nsim, byrow=TRUE)
Pow_Global <- numeric(nsim)
Pow_Sim <- matrix(0, ncol=(length(r)), nrow=nsim, byrow=TRUE)
Pow_Global_HC <- numeric(nsim)
Pow_Sim_HC <- matrix(0, ncol=(length(r)), nrow=nsim, byrow=TRUE)
for (i in 1:nsim){
print(i)
x <- dgp(n, f, sigma, beta0)
mod <- fit(x)
mod_F <- aov(Y ~ -1 + X1, data = x)
glht0_F <- glht(mod_F, linfct = K, rhs = rep(2,4))
glht1_F <- glht(mod_F, linfct = K, rhs = c((r[1] + 2),2,2,2))
glht0 <- glht(mod, linfct = mcp(X1="Tukey"))
glht1 <- glht(mod, linfct = mcp(X1="Tukey"), rhs = r)
P[i,1] <- summary(glht0_F, test=Ftest())$test$pvalue
P[i,2] <- min(TukeyHSD(mod)$X1[,4])
Pow_Global[i] <- summary(glht1_F, test=Ftest())$test$pvalue
Pow_Sim[i,] <- as.numeric(r > TukeyHSD(mod)$X1[,3] | r < TukeyHSD(mod)$X1[,2])
glht0_HC <- glht(mod, linfct = mcp(X1="Tukey"), vcov = vcovHC)
glht1_HC <- glht(mod, linfct = mcp(X1="Tukey"), rhs = r, vcov = vcovHC)
glht0_F_HC <- glht(mod_F, linfct = K, rhs = rep(2,4), vcov=vcovHC)
glht1_F_HC <- glht(mod_F, linfct = K, rhs = c((r[1] + 2),2,2,2), vcov=vcovHC)
P_HC[i,1] <- summary(glht0_F_HC, test=Ftest())$test$pvalue
P_HC[i,2] <- min(summary(glht0_HC)$test$pvalues)
Pow_Global_HC[i] <- summary(glht1_F_HC, test=Ftest())$test$pvalue
Pow_Sim_HC[i,] <- summary(glht1_HC)$test$pvalue
}
Size_Global <- mean(P[,1] <= 0.05)
FWER <- mean(P[,2] <= 0.05)
Power_Global <- mean(Pow_Global <= 0.05)
Power_Sim <- colMeans(Pow_Sim)
Size_Global_HC <- mean(P_HC[,1] <= 0.05)
FWER_HC <- mean(P_HC[,2] <= 0.05)
Power_Global_HC <- mean(Pow_Global_HC <= 0.05)
Power_Sim_HC <- colMeans(Pow_Sim_HC <= 0.05)
ret <- c(Size_Global, FWER, Power_Global, Power_Sim,
Size_Global_HC, FWER_HC, Power_Global_HC, Power_Sim_HC)
return(ret)
}
beta0 <- c(2,2,2,2)
b <- c(seq(-2,2,by=0.1))
n <- c(10, 20, 30, 40)
design <- expand.grid(b, n)
names(design) <- c("b", "N")
nsim <- 1000
#############################################################
### A: Normally distributed data, homogeneneous variances ###
#############################################################
results <- matrix(0, nrow=nrow(design), ncol=20, byrow=T)
results[,1] <- design[,1]
results[,2] <- design[,2]
set.seed(11803)
for (j in 1:nrow(design)) {
print(j)
r <- c(design$b[j],design$b[j],design$b[j],0,0,0)
n <- design$N[j]
f <- 0.2
K <- diag(1,4)
sigma <- c(2,2,2,2)
results[j,3:20] <- sim(nsim, dgp_aov, fit_aov, beta0, r, n, f, sigma, K)
save(results, file = "AOV_hom.Rda")
}
colnames(results) <- c("r", "n", "Size_Global", "FWER_Tukey", "Power_Global",
"H1","H1","H1","H0","H0","H0","Size_Global_HC", "FWER_HC",
"Power_Global_HC", "H1_HC","H1_HC","H1_HC","H0_HC","H0_HC","H0_HC")
results
save(results, file = "AOV_hom.Rda")
####################################################################################################################
### B: Normally distributed data, heterogeneous variances, smaller variances in groups with smaller sample sizes ###
####################################################################################################################
results <- matrix(0, nrow=nrow(design), ncol=20, byrow=T)
results[,1] <- design[,1]
results[,2] <- design[,2]
set.seed(21803)
for (j in 1:nrow(design)) {
print(j)
r <- c(design$b[j],design$b[j],design$b[j],0,0,0)
n <- design$N[j]
f <- 0.2
K <- diag(1,4)
sigma <- c(3,5,7,9)
results[j,3:20] <- sim(nsim, dgp_aov, fit_aov, beta0, r, n, f, sigma, K)
save(results, file = "AOV_het1.Rda")
}
colnames(results) <- c("r", "n", "Size_Global", "FWER_Tukey", "Power_Global",
"H1","H1","H1","H0","H0","H0","Size_Global_HC", "FWER_HC",
"Power_Global_HC", "H1_HC","H1_HC","H1_HC","H0_HC","H0_HC","H0_HC")
save(results, file = "AOV_het1.Rda")
###################################################################################################################
### C: Normally distributed data, heterogeneous variances, smaller variances in groups with larger sample sizes ###
###################################################################################################################
results <- matrix(0, nrow=nrow(design), ncol=20, byrow=T)
results[,1] <- design[,1]
results[,2] <- design[,2]
set.seed(31803)
for (j in 1:nrow(design)) {
print(j)
r <- c(design$b[j],design$b[j],design$b[j],0,0,0)
n <- design$N[j]
f <- 0.2
K <- diag(1,4)
sigma <- c(9,7,5,3)
results[j,3:20] <- sim(nsim, dgp_aov, fit_aov, beta0, r, n, f, sigma, K)
save(results, file = "AOV_het2.Rda")
}
colnames(results) <- c("r", "n", "Size_Global", "FWER_Tukey", "Power_Global",
"H1","H1","H1","H0","H0","H0","Size_Global_HC", "FWER_HC",
"Power_Global_HC", "H1_HC","H1_HC","H1_HC","H0_HC","H0_HC","H0_HC")
save(results, file = "AOV_het2.Rda")
###############################################
### Simulation setup for beta distributed data
###############################################
###################################################################################
### data generating process of group membership for n observations and four groups
### f: parameter controling the relation of group sizes
###################################################################################
dgpX <- function(n, f){
n1 <- n + f * 1 * n
n2 <- n + f * 2 * n
n3 <- n + f * 3 * n
n4 <- n + f * 4 * n
x1 <- as.factor(rep(1:4, c(n1, n2, n3, n4), replace = FALSE))
X <- data.frame(X1 = x1)
return(X)
}
##########################################################################################################################
### Simulations in the unbalanced ANOVA model
### Comparison of OLS and HC3 covariance estimation for the global test
### Comparison of Tukey-Kramer test and max-t test with HC3 covariance estimation for all pairwise comparisons of groups
##########################################################################################################################
sim <- function(nsim, dgp, fit, n, f, K){
P <- matrix(0, ncol=2, nrow=nsim, byrow=TRUE)
P_HC <- matrix(0, ncol=2, nrow=nsim, byrow=TRUE)
for (i in 1:nsim){
print(i)
x <- dgp(n, f)
mod <- fit(x)
mod_F <- aov(Y ~ -1 + X1, data = x)
glht0_F <- glht(mod_F, linfct = K, rhs = rep(1,4))
glht0 <- glht(mod, linfct = mcp(X1="Tukey"))
P[i,1] <- summary(glht0_F, test=Ftest())$test$pvalue
P[i,2] <- min(TukeyHSD(mod)$X1[,4]) # Tukey HSD minimaler adjustierter p-Wert
glht0_HC <- glht(mod, linfct = mcp(X1="Tukey"), vcov = vcovHC)
glht0_F_HC <- glht(mod_F, linfct = K, rhs = rep(1,4), vcov=vcovHC)
P_HC[i,1] <- summary(glht0_F_HC, test=Ftest())$test$pvalue
P_HC[i,2] <- min(summary(glht0_HC)$test$pvalues)
}
Size_Global <- mean(P[,1] <= 0.05)
FWER <- mean(P[,2] <= 0.05)
Size_Global_HC <- mean(P_HC[,1] <= 0.05)
FWER_HC <- mean(P_HC[,2] <= 0.05)
ret <- c(Size_Global, FWER, Size_Global_HC, FWER_HC)
return(ret)
}
################################################################################################################
### D: Beta distributed data, heterogeneous variances, smaller variances in groups with smaller sample sizes ###
################################################################################################################
#################################################################################
### data generating process of beta distributed data in four groups,
### smaller variances in groups with smaller sample sizes
### f: parameter controling the relation of group sizes
### sigma: standard deviation of the errors
#################################################################################
dgp_aov1 <- function(n, f){
X <- dgpX(n, f)
Xm <- model.matrix(~ - 1 + X1, data=X)
n1 <- n + f * 1 * n
n2 <- n + f * 2 * n
n3 <- n + f * 3 * n
n4 <- n + f * 4 * n
lp1 <- rep(1.25,n1) + rbeta(n1,6,2)
lp2 <- rep(5/3,n2) + rbeta(n2,2,4)
lp3 <- rep(1.5,n3) + rbeta(n3,1,1)
lp4 <- rep(1.5,n4) + rbeta(n4,0.5,0.5)
Y <- c(lp1, lp2, lp3, lp4)
data.frame(Y=Y, X)
}
N <- rep(n,rep(41,4))
results <- matrix(0, nrow=length(N), ncol=5, byrow=T)
results[,1] <- N
set.seed(11802)
for (j in 1:nrow(results)) {
print(j)
n <- N[j]
f <- 0.2
K <- diag(1,4)
results[j,2:5] <- sim(nsim, dgp_aov1, fit_aov, n, f, K)
save(results, file = "AOV_het1_beta.Rda")
}
colnames(results) <- c("n", "Size_Global", "FWER_Tukey","Size_Global_HC", "FWER_HC")
save(results, file = "AOV_het1_beta.Rda")
###############################################################################################################
### E: Beta distributed data, heterogeneous variances, smaller variances in groups with larger sample sizes ###
###############################################################################################################
#################################################################################
### data generating process of beta distributed data in four groups,
### smaller variances in groups with larger sample sizes
### f: parameter controling the relation of group sizes
### sigma: standard deviation of the errors
#################################################################################
dgp_aov2 <- function(n, f){
X <- dgpX(n, f)
Xm <- model.matrix(~ - 1 + X1, data=X)
n1 <- n + f
n2 <- n + f * 2 * n
n3 <- n + f * 3 * n
n4 <- n + f * 4 * n
lp1 <- rep(1.5,n1) + rbeta(n1,0.5,0.5)
lp2 <- rep(1.5,n2) + rbeta(n2,1,1)
lp3 <- rep(5/3,n3) + rbeta(n3,2,4)
lp4 <- rep(1.25,n4) + rbeta(n4,6,2)
Y <- c(lp1, lp2, lp3, lp4)
data.frame(Y=Y, X)
}
results <- matrix(0, nrow=length(N), ncol=5, byrow=T)
results[,1] <- N
set.seed(11803)
for (j in 1:length(N)) {
print(j)
n <- N[j]
f <- 0.2
K <- diag(1,4)
results[j,2:5] <- sim(nsim, dgp_aov2, fit_aov, n, f, K)
save(results, file = "AOV_het2_beta.Rda")
}
colnames(results) <- c("n", "Size_Global", "FWER_Tukey","Size_Global_HC", "FWER_HC")
save(results, file = "AOV_het2_beta.Rda")
|