1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
\name{cld}
\alias{cld}
\alias{cld.glht}
\alias{cld.summary.glht}
\alias{cld.confint.glht}
\title{Set up a compact letter display of all pair-wise comparisons}
\description{
Extract information from \code{glht}, \code{summary.glht} or
\code{confint.glht} objects which is required to create
and plot compact letter displays of all pair-wise comparisons.
}
\usage{
\method{cld}{summary.glht}(object, level = 0.05, decreasing = FALSE, ...)
\method{cld}{glht}(object, level = 0.05, decreasing = FALSE, ...)
\method{cld}{confint.glht}(object, decreasing = FALSE, ...)
}
\arguments{
\item{object}{
An object of class \code{glht}, \code{summary.glht} or \code{confint.glht}.
}
\item{level}{
Significance-level to be used to term a specific pair-wise
comparison significant.
}
\item{decreasing}{
logical. Should the order of the letters be increasing or decreasing?
}
\item{...}{additional arguments.}
}
\details{
This function extracts all the information from \code{glht},
\code{summary.glht} or \code{confint.glht} objects that is required
to create a compact letter display of all pair-wise comparisons.
In case the contrast matrix is not of type \code{"Tukey"}, an error
is issued. In case of \code{confint.glht} objects, a pair-wise comparison
is termed significant whenever a particular confidence interval contains 0.
Otherwise, p-values are compared to the value of \code{"level"}.
Once, this information is extracted, plotting of all pair-wise
comparisons can be carried out.
}
\value{
An object of class \code{cld}, a list with items:
\item{y}{
Values of the response variable of the original model.
}
\item{yname}{
Name of the response variable.
}
\item{x}{
Values of the variable used to compute Tukey contrasts.
}
\item{weights}{
Weights used in the fitting process.
}
\item{lp}{
Predictions from the fitted model.
}
\item{covar}{
A logical indicating whether the fitted model contained covariates.
}
\item{signif}{
Vector of logicals indicating significant differences with
hyphenated names that identify pair-wise comparisons.
}
}
\references{
Hans-Peter Piepho (2004), An Algorithm for a Letter-Based
Representation of All-Pairwise Comparisons, \emph{Journal of
Computational and Graphical Statistics}, \bold{13}(2), 456--466.
}
\seealso{
\code{\link{glht}}
\code{\link{plot.cld}}
}
\examples{
### multiple comparison procedures
### set up a one-way ANOVA
data(warpbreaks)
amod <- aov(breaks ~ tension, data = warpbreaks)
### specify all pair-wise comparisons among levels of variable "tension"
tuk <- glht(amod, linfct = mcp(tension = "Tukey"))
### extract information
tuk.cld <- cld(tuk)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot
plot(tuk.cld)
par(old.par)
### now using covariates
data(warpbreaks)
amod2 <- aov(breaks ~ tension + wool, data = warpbreaks)
### specify all pair-wise comparisons among levels of variable "tension"
tuk2 <- glht(amod2, linfct = mcp(tension = "Tukey"))
### extract information
tuk.cld2 <- cld(tuk2)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot using different colors
plot(tuk.cld2, col=c("black", "red", "blue"))
par(old.par)
### set up all pair-wise comparisons for count data
data(Titanic)
mod <- glm(Survived ~ Class, data = as.data.frame(Titanic), weights = Freq, family = binomial())
### specify all pair-wise comparisons among levels of variable "Class"
glht.mod <- glht(mod, mcp(Class = "Tukey"))
### extract information
mod.cld <- cld(glht.mod)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.5,1), no.readonly = TRUE)
### plot
plot(mod.cld)
par(old.par)
}
|