File: cml.Rd

package info (click to toggle)
multcomp 1.4-29-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,444 kB
  • sloc: sh: 28; makefile: 2
file content (51 lines) | stat: -rw-r--r-- 1,944 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
\name{cml}
\alias{cml}
\docType{data}
\title{Chronic Myelogenous Leukemia survival data.}
\description{
  Survival in a randomised trial comparing three treatments for 
  Chronic Myelogeneous Leukemia (simulated data).
}
\usage{data("cml")}
\format{
  A data frame with 507 observations on the following 7 variables.
  \describe{
    \item{\code{center}}{a factor with 54 levels indicating the study center.}
    \item{\code{treatment}}{a factor with levels \code{trt1}, \code{trt2}, \code{trt3} indicating the treatment group.}
    \item{\code{sex}}{sex (0 = female, 1 = male)}
    \item{\code{age}}{age in years}
    \item{\code{riskgroup}}{risk group (0 = low, 1 = medium, 2 = high)}
    \item{\code{status}}{censoring status (FALSE = censored, TRUE = dead)}
    \item{\code{time}}{survival or censoring time in days.}
    }
}
\details{
The data are simulated according to structure of the data by the German CML 
Study Group used in Hehlmann (1994).}

\source{

  R. Hehlmann, H. Heimpel, J. Hasford, H.J. Kolb, H. Pralle, D.K. Hossfeld, 
  W. Queisser, H. Loeffler, A. Hochhaus, B. Heinze (1994), Randomized 
  comparison of interferon-alpha with busulfan and hydroxyurea in chronic 
  myelogenous leukemia. The German CML study group. \emph{Blood}
  \bold{84}(12):4064-4077.

}
\examples{

if (require("coxme")) {
    data("cml")
    ### one-sided simultaneous confidence intervals for many-to-one 
    ### comparisons of treatment effects concerning time of survival 
    ### modeled by a frailty Cox model with adjustment for further 
    ### covariates and center-specific random effect.
    cml_coxme <- coxme(Surv(time, status) ~ treatment + sex + age + riskgroup + (1|center), 
                       data = cml)
    glht_coxme <- glht(model = cml_coxme, linfct = mcp(treatment = "Dunnett"), 
                       alternative = "greater")
    ci_coxme <- confint(glht_coxme)
    exp(ci_coxme$confint)[1:2,]
}
}
\keyword{datasets}