1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
\name{mmm}
\alias{mmm}
\alias{mlf}
\title{Simultaneous Inference for Multiple Marginal Models}
\description{Calculation of correlation between test statistics from multiple marginal models
using the score decomposition}
\usage{
mmm(...)
mlf(...)
}
\arguments{
\item{\dots}{A names argument list containing fitted models (\code{mmm}) or
definitions of linear functions (\code{mlf}). If
only one linear function is defined for \code{mlf},
it will be applied to all models in \code{mmm} by
\code{\link{glht.mlf}}.}
}
\details{
Estimated correlations of the estimated parameters of interest from the
multiple marginal models are obtained using a stacked version of the
i.i.d. decomposition of parameter estimates by means of score components
(first derivatives of the log likelihood). The method is less
conservative than the Bonferroni correction. The details are provided by
Pipper, Ritz and Bisgaard (2012).
The implementation assumes that the model were fitted to the same data,
i.e., the rows of the matrices returned by \code{estfun} belong to the
same observations for each model.
The reference distribution is always multivariate normal, if you want
to use the multivariate t, please specify the corresponding degrees of
freedom as an additional \code{df} argument to \code{\link{glht}}.
Observations with missing values contribute zero to the score function.
Models have to be fitted using \code{\link{na.exclude}} as \code{na.action}
argument.
}
\value{
An object of class \code{mmm} or \code{mlf}, basically a named list of the
arguments with a special method for \code{\link{glht}} being available for
the latter. \code{vcov}, \code{\link[sandwich]{estfun}}, and
\code{\link[sandwich]{bread}} methods are available for objects of class
\code{mmm}.
}
\references{
Christian Bressen Pipper, Christian Ritz and Hans Bisgaard (2011),
A Versatile Method for Confirmatory Evaluation of the Effects
of a Covariate in Multiple Models,
\emph{Journal of the Royal Statistical Society,
Series C (Applied Statistics)}, \bold{61}, 315--326.
}
\author{
Code for the computation of the joint covariance and
sandwich matrices was contributed by Christian Ritz and
Christian B. Pipper.
}
\examples{
### replicate analysis of Hasler & Hothorn (2011),
### A Dunnett-Type Procedure for Multiple Endpoints,
### The International Journal of Biostatistics: Vol. 7: Iss. 1, Article 3.
### DOI: 10.2202/1557-4679.1258
library("sandwich")
### see ?coagulation
if (require("SimComp")) {
data("coagulation", package = "SimComp")
### level "S" is the standard, "H" and "B" are novel procedures
coagulation$Group <- relevel(coagulation$Group, ref = "S")
### fit marginal models
(m1 <- lm(Thromb.count ~ Group, data = coagulation))
(m2 <- lm(ADP ~ Group, data = coagulation))
(m3 <- lm(TRAP ~ Group, data = coagulation))
### set-up Dunnett comparisons for H - S and B - S
### for all three models
g <- glht(mmm(Thromb = m1, ADP = m2, TRAP = m3),
mlf(mcp(Group = "Dunnett")), alternative = "greater")
### joint correlation
cov2cor(vcov(g))
### simultaneous p-values adjusted by taking the correlation
### between the score contributions into account
summary(g)
### simultaneous confidence intervals
confint(g)
### compare with
\dontrun{
library("SimComp")
SimCiDiff(data = coagulation, grp = "Group",
resp = c("Thromb.count","ADP","TRAP"),
type = "Dunnett", alternative = "greater",
covar.equal = TRUE)
}
### use sandwich variance matrix
g <- glht(mmm(Thromb = m1, ADP = m2, TRAP = m3),
mlf(mcp(Group = "Dunnett")),
alternative = "greater", vcov. = sandwich)
summary(g)
confint(g)
}
### attitude towards science data
data("mn6.9", package = "TH.data")
### one model for each item
mn6.9.y1 <- glm(y1 ~ group, family = binomial(),
na.action = na.omit, data = mn6.9)
mn6.9.y2 <- glm(y2 ~ group, family = binomial(),
na.action = na.omit, data = mn6.9)
mn6.9.y3 <- glm(y3 ~ group, family = binomial(),
na.action = na.omit, data = mn6.9)
mn6.9.y4 <- glm(y4 ~ group, family = binomial(),
na.action = na.omit, data = mn6.9)
### test all parameters simulaneously
summary(glht(mmm(mn6.9.y1, mn6.9.y2, mn6.9.y3, mn6.9.y4),
mlf(diag(2))))
### group differences
summary(glht(mmm(mn6.9.y1, mn6.9.y2, mn6.9.y3, mn6.9.y4),
mlf("group2 = 0")))
### alternative analysis of Klingenberg & Satopaa (2013),
### Simultaneous Confidence Intervals for Comparing Margins of
### Multivariate Binary Data, CSDA, 64, 87-98
### http://dx.doi.org/10.1016/j.csda.2013.02.016
### see supplementary material for data description
### NOTE: this is not the real data but only a subsample
influenza <- structure(list(
HEADACHE = c(1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 1L,
0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L,
1L, 1L), MALAISE = c(0L, 0L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 1L,
0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L,
0L), PYREXIA = c(0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 1L, 1L
), ARTHRALGIA = c(0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L,
0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L
), group = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("pla", "trt"), class = "factor"), Freq = c(32L,
165L, 10L, 23L, 3L, 1L, 4L, 2L, 4L, 2L, 1L, 1L, 1L, 1L, 167L,
1L, 11L, 37L, 7L, 7L, 5L, 3L, 3L, 1L, 2L, 4L, 2L)), .Names = c("HEADACHE",
"MALAISE", "PYREXIA", "ARTHRALGIA", "group", "Freq"), row.names = c(1L,
2L, 3L, 5L, 9L, 36L, 43L, 50L, 74L, 83L, 139L, 175L, 183L, 205L,
251L, 254L, 255L, 259L, 279L, 281L, 282L, 286L, 302L, 322L, 323L,
366L, 382L), class = "data.frame")
influenza <- influenza[rep(1:nrow(influenza), influenza$Freq), 1:5]
### Fitting marginal logistic regression models
(head_logreg <- glm(HEADACHE ~ group, data = influenza,
family = binomial()))
(mala_logreg <- glm(MALAISE ~ group, data = influenza,
family = binomial()))
(pyre_logreg <- glm(PYREXIA ~ group, data = influenza,
family = binomial()))
(arth_logreg <- glm(ARTHRALGIA ~ group, data = influenza,
family = binomial()))
### Simultaneous inference for log-odds
xy.sim <- glht(mmm(head = head_logreg,
mala = mala_logreg,
pyre = pyre_logreg,
arth = arth_logreg),
mlf("grouptrt = 0"))
summary(xy.sim)
confint(xy.sim)
### Artificial examples
### Combining linear regression and logistic regression
set.seed(29)
y1 <- rnorm(100)
y2 <- factor(y1 + rnorm(100, sd = .1) > 0)
x1 <- gl(4, 25)
x2 <- runif(100, 0, 10)
m1 <- lm(y1 ~ x1 + x2)
m2 <- glm(y2 ~ x1 + x2, family = binomial())
### Note that the same explanatory variables are considered in both models
### but the resulting parameter estimates are on 2 different scales
### (original and log-odds scales)
### Simultaneous inference for the same parameter in the 2 model fits
summary(glht(mmm(m1 = m1, m2 = m2), mlf("x12 = 0")))
### Simultaneous inference for different parameters in the 2 model fits
summary(glht(mmm(m1 = m1, m2 = m2),
mlf(m1 = "x12 = 0", m2 = "x13 = 0")))
### Simultaneous inference for different and identical parameters in the 2
### model fits
summary(glht(mmm(m1 = m1, m2 = m2),
mlf(m1 = c("x12 = 0", "x13 = 0"), m2 = "x13 = 0")))
### Examples for binomial data
### Two independent outcomes
y1.1 <- rbinom(100, 1, 0.45)
y1.2 <- rbinom(100, 1, 0.55)
group <- factor(rep(c("A", "B"), 50))
m1 <- glm(y1.1 ~ group, family = binomial)
m2 <- glm(y1.2 ~ group, family = binomial)
summary(glht(mmm(m1 = m1, m2 = m2),
mlf("groupB = 0")))
### Two perfectly correlated outcomes
y2.1 <- rbinom(100, 1, 0.45)
y2.2 <- y2.1
group <- factor(rep(c("A", "B"), 50))
m1 <- glm(y2.1 ~ group, family = binomial)
m2 <- glm(y2.2 ~ group, family = binomial)
summary(glht(mmm(m1 = m1, m2 = m2),
mlf("groupB = 0")))
### use sandwich covariance matrix
summary(glht(mmm(m1 = m1, m2 = m2),
mlf("groupB = 0"), vcov. = sandwich))
}
\keyword{models}
|