File: bugfix.Rout.save

package info (click to toggle)
multcomp 1.4-29-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,444 kB
  • sloc: sh: 28; makefile: 2
file content (445 lines) | stat: -rw-r--r-- 15,211 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

R version 4.3.0 (2023-04-21) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> options(digits = 4)
> 
> library("multcomp")
Loading required package: mvtnorm
Loading required package: survival
Loading required package: TH.data
Loading required package: MASS

Attaching package: 'TH.data'

The following object is masked from 'package:MASS':

    geyser

> RNGversion("3.5.2")
Warning message:
In RNGkind("Mersenne-Twister", "Inversion", "Rounding") :
  non-uniform 'Rounding' sampler used
> set.seed(290875)
> 
> ### mcp didn't accept objects of class `contrMat'
> ### spotted by Yves Brostaux <brostaux.y@fsagx.ac.be>
> amod <- aov(response ~ trt, data = cholesterol)
> cht1 <- glht(amod, linfct = mcp(trt = "Tukey"))
> K <- contrMat(table(cholesterol$trt), type = "Tukey")
> cht2 <- glht(amod, linfct = mcp(trt = K))
> stopifnot(all.equal(coef(cht1), coef(cht2)))
> 
> ### several inconsistencies spotted by 
> ### Rich Heiberger <rmh@temple.edu> 2006-11-28
> 
> ### need to be identical
> stopifnot(identical(cht1, print(cht1)))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
                     Estimate
2times - 1time == 0      3.44
4times - 1time == 0      6.59
drugD - 1time == 0       9.58
drugE - 1time == 0      15.17
4times - 2times == 0     3.15
drugD - 2times == 0      6.14
drugE - 2times == 0     11.72
drugD - 4times == 0      2.99
drugE - 4times == 0      8.57
drugE - drugD == 0       5.59

> 
> ### was: error
> summary(cht1)$test$coefficients
 2times - 1time  4times - 1time   drugD - 1time   drugE - 1time 4times - 2times 
          3.443           6.593           9.579          15.166           3.150 
 drugD - 2times  drugE - 2times  drugD - 4times  drugE - 4times   drugE - drugD 
          6.136          11.723           2.986           8.573           5.586 
> 
> 
> ### NAs in coefficients
> tmp.data <- data.frame(EE=gl(2, 1, 24, letters[1:2]),
+                 FF=gl(3, 2, 24, LETTERS[3:5]),
+                 GG=gl(4, 6, 24, letters[6:9]))
> tmp.data$x <- rep(12, 24)
> tmp.data$y <- rep(7, 24)
> tmp.data$z <- c(9, 14, 3, 4, 15, 1, 11, 13, 24, 10, 22, 18,
+                 20, 21, 6, 7, 16, 2, 19, 12, 17, 8, 23, 5)
> tmp.data$w <- c(15, 9, 18, 21, 17, 11, 23, 12, 1, 10, 2, 14, 24, 7,
+                 13, 4, 5, 19, 16, 20, 3, 8, 22, 6)
> 
> tmp.aov <- aov(z ~ EE+FF*GG + x*y +x*EE + y*FF, data=tmp.data)
> 
> try(glht(tmp.aov, linfct=mcp(EE="Tukey")))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
           Estimate
b - a == 0    -5.83

Warning messages:
1: In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
2: In glht.matrix(model = list(coefficients = c(`(Intercept)` = 14.4166666666667,  :
  6 out of 19 coefficients not estimable in 'model'
> try(glht(tmp.aov, linfct=mcp(FF="Tukey")))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
           Estimate
D - C == 0     -8.0
E - C == 0     -3.5
E - D == 0      4.5

Warning messages:
1: In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
2: In glht.matrix(model = list(coefficients = c(`(Intercept)` = 14.4166666666667,  :
  6 out of 19 coefficients not estimable in 'model'
> glht(tmp.aov, linfct=mcp(GG="Tukey"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
           Estimate
g - f == 0      0.5
h - f == 0      9.0
i - f == 0      4.0
h - g == 0      8.5
i - g == 0      3.5
i - h == 0     -5.0

Warning messages:
1: In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
2: In glht.matrix(model = list(coefficients = c(`(Intercept)` = 14.4166666666667,  :
  6 out of 19 coefficients not estimable in 'model'
> 
> ### covariate interactions: fire a warning
> tmp.aov <- aov(z ~ w*GG , data=tmp.data)
> glht(tmp.aov, linfct = mcp(GG = "Tukey"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
           Estimate
g - f == 0     9.45
h - f == 0    -0.11
i - f == 0    -4.40
h - g == 0    -9.56
i - g == 0   -13.85
i - h == 0    -4.29

Warning message:
In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
> 
> ### stop with informative error message
> amod <- aov(breaks ~ tension + Error(wool), data = warpbreaks)
> try(glht(amod, linfct = mcp(tension = "Tukey")))
Error in model.matrix.aovlist(model) : 
  'glht' does not support objects of class 'aovlist'
Error in factor_contrasts(model) : 
  no 'model.matrix' method for 'model' found!
> 
> ### print error, spotted by Rich
> amod <- aov(breaks ~ wool * tension, data = warpbreaks)
> wht <- glht(amod, linfct = mcp(tension = "Tukey"))
Warning message:
In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
> tmp <- confint(wht, calpha=2)
> print(tmp)

	 Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts


Fit: aov(formula = breaks ~ wool * tension, data = warpbreaks)

Quantile = 2
95% confidence level
 

Linear Hypotheses:
           Estimate lwr     upr    
M - L == 0 -20.556  -30.870 -10.241
H - L == 0 -20.000  -30.315  -9.685
H - M == 0   0.556   -9.759  10.870

> 
> ### coef. and vcov. didn't pass through
> ### bug report by John Deke <jdeke73@gmail.com>
> lmod <- lm(Fertility ~ ., data = swiss) 
> my.model <- list(coef(lmod),vcov(lmod)) 
> coef2 <- function(model) return(model[[1]]) 
> vcov2 <- function(model) return(model[[2]]) 
> a <- glht(model = my.model, linfct = c("Agriculture=0","Catholic=0"),
+           coef. = coef2, vcov. = vcov2, df = 100) 
> b <- glht(model = lmod, linfct = c("Agriculture=0","Catholic=0"), 
+           df = 100)
> stopifnot(all.equal(coef(a), coef(b)))
> 
> ### checks in mcp (spotted by Rich)
> amod <- aov(breaks ~ tension, data = warpbreaks)
> try(glht(amod, linfct = mcp(group = "Tukey")))
Error in mcp2matrix(model, linfct = linfct) : 
  Variable(s) 'group' have been specified in 'linfct' but cannot be found in 'model'! 
> tmp <- warpbreaks
> class(tmp$tension) <- "numeric"
> amod <- aov(breaks ~ tension, data = tmp)
> try(glht(amod, linfct = mcp(tension = "Tukey")))
Error in mcp2matrix(model, linfct = linfct) : 
  Variable(s) 'tension' of class 'integer' is/are not contained as a factor in 'model'.
> 
> ### symbolic description and interactions
> ### spotted by Antonio Fabio Di Narzo <antonio.dinarzo@unibo.it>
> dat <- data.frame(y = rnorm(6), x = seq_len(6), f = gl(2, 3))
> lf <- glht(lm(y ~ x * f, data = dat), 'x + x:f2 = 0')$linfct
> stopifnot(all.equal(max(abs(lf - c(0, 1, 0, 1))), 0))
> lf <- glht(lm(y ~ x * f, data = dat), 'x + 2.5 * x:f2 = 0')$linfct
> stopifnot(all.equal(max(abs(lf - c(0, 1, 0, 2.5))), 0))
> 
> ### example from Bretz 2001 JSCS
> 
> `tmp` <-
+ structure(list(gr = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
+ 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
+ 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
+ 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
+ 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
+ 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("1", 
+ "2", "3"), class = "factor"), age = c(39L, 40L, 41L, 41L, 45L, 
+ 49L, 52L, 47L, 61L, 65L, 58L, 59L, 29L, 29L, 33L, 32L, 31L, 29L, 
+ 29L, 30L, 21L, 28L, 23L, 35L, 38L, 38L, 43L, 39L, 38L, 42L, 43L, 
+ 43L, 37L, 50L, 50L, 45L, 48L, 51L, 46L, 58L, 27L, 25L, 24L, 32L, 
+ 23L, 25L, 32L, 18L, 19L, 26L, 33L, 27L, 33L, 25L, 42L, 35L, 35L, 
+ 41L, 38L, 41L, 36L, 36L, 41L, 41L, 37L, 42L, 39L, 41L, 43L, 41L, 
+ 48L, 47L, 53L, 49L, 54L, 48L, 49L, 47L, 52L, 58L, 62L, 65L, 62L, 
+ 59L), y = c(4.62, 5.29, 5.52, 3.71, 4.02, 5.09, 2.7, 4.31, 2.7, 
+ 3.03, 2.73, 3.67, 5.21, 5.17, 4.88, 4.5, 4.47, 5.12, 4.51, 4.85, 
+ 5.22, 4.62, 5.07, 3.64, 3.64, 5.09, 4.61, 4.73, 4.58, 5.12, 3.89, 
+ 4.62, 4.3, 2.7, 3.5, 5.06, 4.06, 4.51, 4.66, 2.88, 5.29, 3.67, 
+ 5.82, 4.77, 5.71, 4.47, 4.55, 4.61, 5.86, 5.2, 4.44, 5.52, 4.97, 
+ 4.99, 4.89, 4.09, 4.24, 3.88, 4.85, 4.79, 4.36, 4.02, 3.77, 4.22, 
+ 4.94, 4.04, 4.51, 4.06, 4.02, 4.99, 3.86, 4.68, 4.74, 3.76, 3.98, 
+ 5, 3.31, 3.11, 4.76, 3.95, 4.6, 4.83, 3.18, 3.03)), .Names = c("gr", 
+ "age", "y"), row.names = c(NA, -84L), class = "data.frame")
> 
> amod <- aov(y ~ gr + age, data = tmp)
> glht(amod, linfct = mcp(gr = "Tukey"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Linear Hypotheses:
           Estimate
2 - 1 == 0   0.0467
3 - 1 == 0   0.1169
3 - 2 == 0   0.0702

> 
> ### better error message
> ### suggested by Rich
> amod <- aov(breaks ~ tension, data = warpbreaks)
> try(glht(amod, linfct = mcp(tension = "Warp")))
Error : multcomp:::chrlinfct2matrix: argument 'Warp' cannot be interpreted as expression
> 
> ### cld did not find a terms component
> ### spotted by Peter B. Mandeville <mandevip@hotmail.com>
> if (require("nlme")) {
+     data("Orthodont")
+     fm1 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
+     hsd1 <- glht(fm1, linfct = mcp(Sex = "Tukey"))
+     cld(hsd1)
+ }
Loading required package: nlme
  Male Female 
   "a"    "b" 
> 
> ### spotted by <chris.chizinski@gmail.com>
> ### example code by Achim Zeileis <Achim.Zeileis@wu.ac.at>
> ## various models with and without intercept
> m1a <- lm(breaks ~ tension, data = warpbreaks)
> m1b <- lm(breaks ~ 0 + tension, data = warpbreaks)
> m2a <- lm(breaks ~ wool + tension, data = warpbreaks)
> m2b <- lm(breaks ~ 0 + wool + tension, data = warpbreaks)
> 
> ## these two are equivalent: one factor with/without intercept
> stopifnot(all.equal(
+ coef(glht(m1a, linfct = mcp(tension = "Tukey"))),
+ coef(glht(m1b, linfct = mcp(tension = "Tukey")))))
> 
> ## these two should be equivalent: two factors with/without intercept
> ## but the latter fails
> stopifnot(all.equal(
+ coef(glht(m2a, linfct = mcp(tension = "Tukey"))),
+ coef(glht(m2b, linfct = mcp(tension = "Tukey")))))
> 
> library("MASS")
> xdf <- data.frame(y = gl(3, 10, ordered = TRUE), grp = sample(gl(3, 10)))
> glht(polr(y ~ grp, data = xdf), mcp(grp = "Dunnett"))

Re-fitting to get Hessian


	 General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Linear Hypotheses:
           Estimate
2 - 1 == 0    0.308
3 - 1 == 0   -0.918

> 
> ### interactions of two factors
> dat <- expand.grid(f = gl(2, 3), f2 = gl(3, 2))
> dat$y <- rnorm(nrow(dat))
> lf <- glht(lm(y ~ f : f2 - 1, data = dat), 'f1:f21 - f2:f22 = 0')$linfct
> stopifnot(all.equal(max(abs(lf - c(1, 0, 0, -1, 0, 0))), 0))
> 
> ### plotting one-sided confidence intervals
> amod <- aov(breaks ~ wool + tension, data = warpbreaks)
> wht <- glht(amod, linfct = mcp(tension = "Tukey"), alternative="greater")
> plot(wht, xlim=c(-30, 30), main="right side was missing")
> wht <- glht(amod, linfct = mcp(tension = "Tukey"), alternative="less")
> plot(wht, xlim=c(-40, 20), main="left side was missing")
> 
> ### reported by Christian Ritz
> summary(glht(parm(1:4,matrix(c(1,0.97,0.89,0.74,
+                                0.97,1,0.97,0.89,
+                                0.89,0.97,1,0.97,
+                                0.74,0.89,0.97,1), 4, 4))))

	 Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
        Estimate Std. Error z value Pr(>|z|)
V1 == 0        1          1       1        1
V2 == 0        2          1       2        1
V3 == 0        3          1       3        1
V4 == 0        4          1       4        1
(Adjusted p values reported -- single-step method)

Warning messages:
1: In RET$pfunction("adjusted", ...) :
  Covariance matrix not positive semidefinite
2: In RET$pfunction("adjusted", ...) :
  Covariance matrix not positive semidefinite
3: In RET$pfunction("adjusted", ...) :
  Covariance matrix not positive semidefinite
4: In RET$pfunction("adjusted", ...) :
  Covariance matrix not positive semidefinite
> 
>                                
> ### reported by Melissa Chester Key (Apr 22, 2016)
> set.seed(2343)
> 
> X <- data.frame(X1 = rep(c(1,0),c(20,30)),
+   X2 = rep(rep(c(1,0),3),c(rep(10,4),0,10)),
+   X3 = rep(rep(c(1,0),5),each=5))
> Y <- rnorm(50,4 + 4*X[,1] + 4*X[,2] + X[,3] + .5*X[,1]*X[,3] + .4*X[,2]*X[,3],.25)
> 
> model <- lm(Y ~ (X1 + X2) * X3,data=X)
> coef(model)
(Intercept)          X1          X2          X3       X1:X3       X2:X3 
     3.9848      4.0608      4.0318      0.9166      0.4455      0.4605 
> 
> my.contrasts<- c(
+   "X1 - X2 + .5*X1:X3 - .5*X2:X3 = 0",  # previously wrong answer (actually got X1 + X2 + 0.5* X1)
+   "X1 + .5*X1:X3 - X2 - .5*X2:X3 = 0",  # previously wrong answer
+   "X1 + .5*X1:X3 - .5*X2:X3 - X2 = 0")  # right answer
> 
> (contrast.result <- glht(model,lin = my.contrasts))

	 General Linear Hypotheses

Linear Hypotheses:
                                         Estimate
X1 - X2 + 0.5 * X1:X3 - 0.5 * X2:X3 == 0   0.0215
X1 + 0.5 * X1:X3 - X2 - 0.5 * X2:X3 == 0   0.0215
X1 + 0.5 * X1:X3 - 0.5 * X2:X3 - X2 == 0   0.0215

> 
> # right calculation
> (ok <- sum(coef(model) * c(0,1,-1,0,.5,-.5)))
[1] 0.02154
> 
> stopifnot(all.equal(as.numeric(coef(contrast.result)), rep(sum(coef(model) * c(0,1,-1,0,.5,-.5)),3)))
> 
> 
> # actual calculation - note that -1 has changed to 1
> #sum(coef(model) * c(0, 1, 1, 0, .5, -.5))
> 
> 
> (mc <- multcomp:::chrlinfct2matrix(my.contrasts, names(coef(model))))
$K
                                    (Intercept) X1 X2 X3 X1:X3 X2:X3
X1 - X2 + 0.5 * X1:X3 - 0.5 * X2:X3           0  1 -1  0   0.5  -0.5
X1 + 0.5 * X1:X3 - X2 - 0.5 * X2:X3           0  1 -1  0   0.5  -0.5
X1 + 0.5 * X1:X3 - 0.5 * X2:X3 - X2           0  1 -1  0   0.5  -0.5

$m
[1] 0 0 0

$alternative
[1] "two.sided"

> 
> stopifnot(all.equal(as.numeric(mc$K[1,c('(Intercept)', 'X1','X2', 'X3','X1:X3','X2:X3')]),c( 0,1,-1 ,0, 0.5,-0.5)))
> stopifnot(all.equal(as.numeric(mc$K[2,c('(Intercept)', 'X1','X2', 'X3','X1:X3','X2:X3')]),c( 0,1,-1 ,0, 0.5,-0.5)))
> stopifnot(all.equal(as.numeric(mc$K[3,c('(Intercept)', 'X1','X2', 'X3','X1:X3','X2:X3')]),c( 0,1,-1 ,0, 0.5,-0.5)))
> 
> ### "(Intercept)" in char exprs for linfct
> x <- runif(100)
> y <- rnorm(length(x))
> m <- lm(y ~ x)
> 
> stopifnot(all.equal(coef(glht(m, linfct = "(Intercept) = 0")),
+                     coef(m)["(Intercept)"], check.attrributes = FALSE))
> stopifnot(all.equal(coef(glht(m, linfct = "(Intercept) + x = 0")),
+                     sum(coef(m)), check.attributes = FALSE))
> 
> 
> proc.time()
   user  system elapsed 
  1.164   0.064   1.224