File: regtest-interface.Rout.save

package info (click to toggle)
multcomp 1.4-29-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,444 kB
  • sloc: sh: 28; makefile: 2
file content (179 lines) | stat: -rw-r--r-- 4,783 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 
> library("multcomp")
Loading required package: mvtnorm
Loading required package: survival
Loading required package: TH.data
Loading required package: MASS

Attaching package: 'TH.data'

The following object is masked from 'package:MASS':

    geyser

> set.seed(290875)
> 
> testdata <- data.frame(y = rnorm(21), 
+                        f1 <- factor(c(rep(c("A", "B", "C"), 7))),
+                        f2 <- factor(c(rep("D", 10), rep("E", 11))),
+                        x <- rnorm(21))
> 
> # one-way ANOVA
> coef(amod <- aov(y ~ f1, data = testdata))
(Intercept)         f1B         f1C 
 -0.4394751   0.5151680   0.6886101 
> glht(amod, linfct = mcp(f1 = "Dunnett"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Linear Hypotheses:
           Estimate
B - A == 0   0.5152
C - A == 0   0.6886

> 
> # and a continuous covariable: ANCOVA
> coef(lmod <- lm(y ~ f1 + x, data = testdata))
 (Intercept)          f1B          f1C            x 
-0.434528566  0.509444592  0.686181780 -0.009491201 
> glht(lmod, linfct = mcp(f1 = "Dunnett"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Linear Hypotheses:
           Estimate
B - A == 0   0.5094
C - A == 0   0.6862

> 
> # ANCOVA with an additional factor as covariable
> coef(lmod <- lm(y ~ f1 + f2 + x, data = testdata))
(Intercept)         f1B         f1C         f2E           x 
-0.40849498  0.51296437  0.69200699 -0.05266965 -0.01613183 
> glht(lmod, linfct = mcp(f1 = "Dunnett"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Linear Hypotheses:
           Estimate
B - A == 0    0.513
C - A == 0    0.692

> 
> # and with interaction terms
> coef(lmod <- lm(y ~ f1 + f2 + f2:f1 + x, data = testdata))
(Intercept)         f1B         f1C         f2E           x     f1B:f2E 
-0.44532319  0.70282663  0.65613337  0.05552324 -0.03443721 -0.37862471 
    f1C:f2E 
 0.02753451 
> glht(lmod, linfct = mcp(f1 = "Dunnett"))

	 General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts


Linear Hypotheses:
           Estimate
B - A == 0   0.7028
C - A == 0   0.6561

Warning message:
In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
> 
> # with contrasts as expressions
> glht(lmod, linfct = mcp(f1 = c("B - A = 0", "C - A = 0")))

	 General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts


Linear Hypotheses:
           Estimate
B - A == 0   0.7028
C - A == 0   0.6561

Warning message:
In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate
> 
> tmp <- multcomp:::chrlinfct2matrix(c(l1 = "x1 - x2 = 2", 
+                                       l2 = "x2 + 3 * x3 = 1"), 
+                                       paste("x", 1:3, sep = ""))
> 
> stopifnot(max(abs(tmp$K - rbind(c(1, -1, 0), c(0, 1, 3)))) < sqrt(.Machine$double.eps))
> stopifnot(max(abs(tmp$m - c(2, 1))) < sqrt(.Machine$double.eps))
> 
> ### coef.survreg and vcov.survreg need special tuning
> ### thx to Z for pointing this out
> if (require("survival")) {
+     smod <- survreg(Surv(futime, fustat) ~ ecog.ps + rx, 
+                     data = ovarian, dist = 'weibull')
+     K <- diag(length(coef(smod)))
+     rownames(K) <- names(coef(smod))
+     glht(smod, linfct = K)
+ }

	 General Linear Hypotheses

Linear Hypotheses:
                 Estimate
(Intercept) == 0   6.8967
ecog.ps == 0      -0.3850
rx == 0            0.5286

> 
> ### new `means' comparisons
> amod <- aov(weight ~ dose + gesttime + number, data = litter)
> confint(glht(amod, linfct = mcp(dose = "Means")))

	 Simultaneous Confidence Intervals

Multiple Comparisons of Means: Mean Contrasts


Fit: aov(formula = weight ~ dose + gesttime + number, data = litter)

Quantile = 2.5558
95% family-wise confidence level
 

Linear Hypotheses:
         Estimate lwr     upr    
0 == 0   32.3651  30.0805 34.6498
5 == 0   29.0127  26.6372 31.3883
50 == 0  30.0743  27.5239 32.6246
500 == 0 29.6899  27.1591 32.2207

> 
> proc.time()
   user  system elapsed 
  0.516   0.012   0.525