1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
R version 3.2.3 (2015-12-10) -- "Wooden Christmas-Tree"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> library("multcomp")
Loading required package: mvtnorm
Loading required package: survival
Loading required package: TH.data
Loading required package: MASS
Attaching package: 'TH.data'
The following object is masked from 'package:MASS':
geyser
>
> ###<FIXME> compare results of mmod and glht.mlf </FIXME>
>
> ### code by Christian Ritz
> "mmod" <- function(modelList, varName, seType = "san")
+ {
+ require(multcomp, quietly = TRUE)
+ require(sandwich, quietly = TRUE)
+
+ if (length(seType) == 1) {seType <- rep(seType, length(modelList))}
+ if (length(varName) == 1) {varName <- rep(varName, length(modelList))}
+
+ ## Extracting score contributions from the individual model fits
+ makeIIDdecomp <- function(modelObject, varName)
+ {
+ numObsUsed <- ifelse(inherits(modelObject, "coxph"), modelObject$n, nrow(modelObject$model))
+ iidVec0 <- bread(modelObject)[varName, , drop = FALSE] %*% t(estfun(modelObject))
+ moNAac <- modelObject$na.action
+ numObs <- numObsUsed + length(moNAac)
+ iidVec <- rep(0, numObs)
+ if (!is.null(moNAac))
+ {
+ iidVec[-moNAac] <- sqrt(numObs/numObsUsed) * iidVec0
+ }
+ else {
+ iidVec <- iidVec0
+ }
+ list(iidVec = iidVec, numObsUsed = numObsUsed, numObs = numObs)
+ }
+ numModels <- length(modelList)
+ if (identical(length(varName), 1))
+ {
+ varName <- rep(varName, numModels)
+ }
+ iidList <- mapply(makeIIDdecomp, modelList, varName, SIMPLIFY = FALSE)
+ iidresp <- matrix(as.vector(unlist(lapply(iidList, function(listElt) {listElt[[1]]}))), nrow = numModels, byrow = TRUE)
+ pickFct <- function(modelObject, varName, matchStrings)
+ {
+ as.vector(na.omit((coef(summary(modelObject))[varName, ])[matchStrings]))
+ }
+
+ ## Retrieving parameter estimates from the individual fits
+ estVec <- as.vector(unlist(mapply(pickFct, modelList, varName, MoreArgs = list(matchStrings = c("Estimate", "coef")))))
+ # "Estimate" or "coef" used in glm(), lm() and coxph() summary output, respectively
+
+ ## Calculating the estimated variance-covariance matrix of the parameter estimates
+ numObs <- iidList[[1]]$numObs
+ covar <- (iidresp %*% t(iidresp)) / numObs
+ vcMat <- covar / numObs # Defining the finite-sample variance-covariance matrix
+
+ ## Replacing sandwich estimates by model-based standard errors
+ modbas <- seType == "mod"
+ if (any(modbas))
+ {
+ corMat <- cov2cor(vcMat)
+ ## Retrieving standard errors for the specified estimate from the individual fits
+ modSE <- as.vector(unlist(mapply(pickFct, modelList, varName, MoreArgs = list(matchStrings = c("Std. Error", "se(coef)")))))
+
+ sanSE <- sqrt(diag(vcMat))
+ sanSE[modbas] <- modSE[modbas]
+ vcMat <- diag(sanSE) %*% corMat %*% diag(sanSE)
+ }
+
+ ## Naming the parameter vector (easier way to extract the names of the model fits provided as a list in the first argument?)
+ names1 <- sub("list", "", deparse(substitute(modelList)), fixed = TRUE)
+ names2 <- sub("(", "", names1, fixed = TRUE)
+ names3 <- sub(")", "", names2, fixed = TRUE)
+ names4 <- sub(" ", "", names3, fixed = TRUE)
+ names(estVec) <- unlist(strsplit(names4, ","))
+
+ return(parm(coef = estVec, vcov = vcMat, df = 0))
+ }
>
>
>
>
>
> set.seed(29)
> ## Combining linear regression and logistic regression
> y1 <- rnorm(100)
> y2 <- factor(y1 + rnorm(100, sd = .1) > 0)
> x1 <- gl(4, 25)
> x2 <- runif(100, 0, 10)
>
> m1 <- lm(y1 ~ x1 + x2)
> m2 <- glm(y2 ~ x1 + x2, family = binomial())
> ## Note that the same explanatory variables are considered in both models
> ## but the resulting parameter estimates are on 2 different scales (original and log-odds scales)
>
> ## Simultaneous inference for the same parameter in the 2 model fits
> simult.x12 <- mmod(list(m1, m2), c("x12", "x12"))
> summary(glht(simult.x12))
Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
m1 == 0 -0.3537 0.2808 -1.260 0.312
m2 == 0 -0.6409 0.5681 -1.128 0.382
(Adjusted p values reported -- single-step method)
>
> ## Simultaneous inference for different parameters in the 2 model fits
> simult.x12.x13 <- mmod(list(m1, m2), c("x12", "x13"))
> summary(glht(simult.x12.x13))
Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
m1 == 0 -0.3537 0.2808 -1.260 0.351
m2 == 0 -0.8264 0.5874 -1.407 0.276
(Adjusted p values reported -- single-step method)
>
> ## Simultaneous inference for different and identical parameters in the 2 model fits
> simult.x12x2.x13 <- mmod(list(m1, m1, m2), c("x12", "x13", "x13"))
> summary(glht(simult.x12x2.x13))
Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
m1 == 0 -0.3537 0.2808 -1.260 0.407
m1 == 0 -0.4220 0.2801 -1.507 0.274
m2 == 0 -0.8264 0.5874 -1.407 0.323
(Adjusted p values reported -- single-step method)
> confint(glht(simult.x12x2.x13))
Simultaneous Confidence Intervals
Fit: NULL
Quantile = 2.3087
95% family-wise confidence level
Linear Hypotheses:
Estimate lwr upr
m1 == 0 -0.3537 -1.0019 0.2945
m1 == 0 -0.4220 -1.0687 0.2247
m2 == 0 -0.8264 -2.1825 0.5297
>
>
> ## Examples for binomial data
>
> ## Two independent outcomes
> y1.1 <- rbinom(100, 1, 0.5)
> y1.2 <- rbinom(100, 1, 0.5)
> group <- factor(rep(c("A", "B"), 50))
>
> modely1.1 <- glm(y1.1 ~ group, family = binomial)
> modely1.2 <- glm(y1.2 ~ group, family = binomial)
>
> mmObj.y1 <- mmod(list(modely1.1, modely1.2), "groupB")
> simult.y1 <- glht(mmObj.y1)
> summary(simult.y1)
Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
modely1.1 == 0 0.8473 0.4186 2.024 0.084 .
modely1.2 == 0 0.2404 0.4008 0.600 0.796
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
>
> ## Two perfectly correlated outcomes
> y2.1 <- rbinom(100, 1, 0.5)
> y2.2 <- y2.1
> group <- factor(rep(c("A", "B"), 50))
>
> modely2.1 <- glm(y2.1 ~ group, family = binomial)
> modely2.2 <- glm(y2.2 ~ group, family = binomial)
>
> mmObj.y2 <- mmod(list(modely2.1, modely2.2), "groupB")
> simult.y2 <- glht(mmObj.y2)
> summary(simult.y2)
Simultaneous Tests for General Linear Hypotheses
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
modely2.1 == 0 0.2412 0.4015 0.601 0.548
modely2.2 == 0 0.2412 0.4015 0.601 0.548
(Adjusted p values reported -- single-step method)
>
>
> proc.time()
user system elapsed
0.352 0.012 0.359
|