1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
PROGRAM MULTIMIX
* This program fits a mixture of multivariate distributions using
* the EM algorithm. The data file contains both categorical and
* continuous variables.
* If the program does not converge after iter=200 iterations, the
* estimates of the parameters will be entered into
* EMPARAMEST.OUT. This file can then be used as the parameter
* input file for PROGRAM MULTIMIX if desired.
* The assignment of the observations to groups (IGP(i)) and the
* posterior probabilities (Zij's) are entered into GROUPS.OUT.
* This file can be used in MINITAB etc. for further analysis.
* NOTE:
* (1) THIS PROGRAM REQUIRES VARIABLES IN A PARTITION TO BE STORED
* CONTIGUOUSLY. HENCE THE DATA IS READ IN WITH THE VARIABLE ORDER
* BEING SPECIFIED BY JP(J). INTYPE(J) AND NCAT(J) BOTH REFER TO
* THE REARRANGED DATA
* (2) IF SDENS=0, THEN Z(II,K) IS SET TO 0.01
* (3) THE PROGRAM CURRENTLY HAS A MAXIMUM OF
* 1500 OBSERVATIONS (iob=1500)
* 6 GROUPS (ik6=6)
* 15 ATTRIBUTES & 15 PARTITIONS (ip15=15)
* 10 LEVELS OF CATEGORIES (im10=10)
* 200 ITERATIONS FOR CONVERGENCE (iter=200)
* ******ALTER IF REQUIRED******
* (REMEMBER TO ALTER PARAMETERS IN DETINV ALSO)
* The parameter file contains:-
* NG - the number of groups
* NOBS - the number of observations
* NVAR - the number of variables
* NPAR - the number of partitions
* ISPEC - an indicator variable for a specified grouping of the
* observations (1 = observations are not specified into
* groups, 2 = observations are specified into groups)
* JP(j) - column in the data array in which the jTH variable of
* the file will be stored
* IP(l) - number of variables in the lTH partition, l=1,NPAR
* IPC(l) - number of continuous variables in partition l, l=1,NPAR
* ISV(l) - indicator starting value for the partition, l=1,NPAR
* IEV(l) - indicator end value for the partition, l=1,NPAR
* ITYPE(l) - indicator giving the type of model each partition is
* (1 = categorical, 2 = MVN, 3 = location models), l=1,NPAR
* INTYPE(j) - an indicator variable giving type of variable, j=1,NVAR
* (1 = categorical variable, 2 = continuous variable,
* 3 = categorical variable involved in location model,
* 4 = continuous variable involved in the location model)
* NCAT(j) - number of categories of jTH variable.
* (For continuous variables, set NCAT(J)=0)
* PI(k) - estimated mixing proportions for each group, k=1,NG
* THETA(K,J,M) - estimated probability that the jTH categorical
* variable is at level M, given that in group k
* EMUL(k,l,j,m)- estimated mean vector for each group, each
* partition, and each location of the location model variables
* EMU(K,L,J) -estimated mean vector for each group and each
* partition of continuous variables
* VARIX(K,L,I,J) -estimated covariance matrices for each group
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
CHARACTER*16 infile, datafile
PARAMETER (PIE=3.141592653589792, iob=2000, ip15=15, ik6=6,
: im10=10, iter=200)
DIMENSION EMU(ik6,ip15,ip15),VAR(ik6,ip15,ip15,ip15),
: Z(iob,ik6), PI(ik6), DENS(ik6,ip15), VARIN(ik6,ip15,ip15,ip15),
: ZSUM(ik6), XSUM(ik6,ip15), ADET(ik6,ip15), CLOGLI(iter),
: VARIX(ik6,ip15,ip15,ip15), APRODENS(ik6), IP(ip15), IPC(ip15),
: ISV(ip15), IEV(ip15), ITYPE(ip15), EMUL(ik6,ip15,ip15,im10),
: THETA(ik6,ip15,0:im10), PROB(ik6,iob),INTYPE(ip15),NCAT(ip15),
: IM(ip15), IGP(iob), NUM(ik6), XSUM2(ik6,ip15,ip15),ZM(ik6,ip15),
: IGRP(iob), JP(ip15), IX(iob,ip15), X(iob,ip15)
PRINT *, ' MIXTURE ESTIMATION BY EM'
PRINT *, '-------------------------------'
PRINT *, 'Data file: '
READ (*,10) datafile
10 FORMAT (A16)
PRINT *, 'Parameter file: '
READ (*,10) infile
OPEN (7, FILE='GENERAL.OUT', STATUS='NEW')
OPEN (8, FILE=datafile, STATUS='OLD')
OPEN (9, FILE=infile, STATUS='OLD')
OPEN(12, FILE='GROUPS.OUT',STATUS='NEW')
READ (9,*) NG, NOBS, NVAR, NPAR,ISPEC
READ (9,*) (JP(J),J=1,NVAR)
READ (9,*) (IP(L),L=1,NPAR)
READ (9,*) (IPC(L), L=1,NPAR)
READ (9,*) (ISV(L),L=1,NPAR)
READ (9,*) (IEV(L),L=1,NPAR)
READ (9,*) (ITYPE(L),L=1,NPAR)
READ (9,*) (INTYPE(J),J=1,NVAR)
READ (9,*) (NCAT(J),J=1,NVAR)
* read in estimates of the parameters if grouping not specified
IF(ISPEC.EQ.1) THEN
READ(9,*) (PI(K),K=1,NG)
DO 12 K=1,NG
DO 12 L=1,NPAR
IF (ITYPE(L).EQ.1) THEN
DO 13 J=ISV(L),IEV(L)
READ(9,*) (THETA(K,J,M),M=1,NCAT(J))
13 CONTINUE
ELSE IF(ITYPE(L).EQ.2) THEN
READ(9,*)(EMU(K,L,J),J=1,IPC(L))
ELSE IF(ITYPE(L).EQ.3) THEN
DO 14 J=ISV(L),IEV(L)
IF(INTYPE(J).EQ.3) THEN
READ(9,*)(THETA(K,J,M),M=1,NCAT(J))
IM(L)=NCAT(J)
END IF
14 CONTINUE
J1=0
DO 15 J=ISV(L),IEV(L)
IF(INTYPE(J).EQ.4) THEN
J1=J1+1
READ(9,*)
: (EMUL(K,L,J1,M),M=1,IM(L))
END IF
15 CONTINUE
END IF
12 CONTINUE
DO 16 K=1,NG
DO 16 L=1,NPAR
IF(ITYPE(L).NE.1)
: READ(9,*)((VARIX(K,L,I,J),J=1,IPC(L)),I=1,IPC(L))
16 CONTINUE
ELSE
READ(9,*) (IGRP(I),I=1,NOBS)
DO 18 I=1,NOBS
DO 18 K=1,NG
Z(I,K)=0.0
18 CONTINUE
DO 31 I=1,NOBS
IK=IGRP(I)
Z(I,IK)=1.0
31 CONTINUE
DO 33 L=1,NPAR
IF(ITYPE(L).EQ.3) THEN
DO 32 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) IM(L)=NCAT(J)
32 CONTINUE
END IF
33 CONTINUE
END IF
DO 17 I=1,NOBS
READ(8,* ) (X(I,JP(J)),J=1,NVAR)
17 CONTINUE
* Check the categorical variable to see if 0 is a category.
* Add 1 to the variables if it is so that Xij=0 is taken as
* level 1, Xij=1 is level 2 etc.
DO 80 J=1,NVAR
IF ((INTYPE(J).EQ.1).OR.(INTYPE(J).EQ.3)) THEN
IMIN=NINT(X(1,J))
DO 81 I=2,NOBS
INEXT=NINT(X(I,J))
IF(INEXT.LT.IMIN) IMIN=INEXT
81 CONTINUE
IF (IMIN.EQ.0) THEN
DO 82 I=1,NOBS
IX(I,J)=NINT(X(I,J)) + 1
82 CONTINUE
ELSE
DO 83 I=1,NOBS
IX(I,J)=NINT(X(I,J))
83 CONTINUE
END IF
END IF
80 CONTINUE
* print the input values
WRITE(7,50)NG,NOBS,NVAR,NPAR
50 FORMAT(/,' NO OF GROUPS IS ',I3,/,' NO OF OBSERVATIONS IS ',
: I5,/,' NO OF VARIABLES ',I3,/,' NO OF PARTITIONS', I3)
WRITE(7,51)(IP(L),L=1,NPAR)
51 FORMAT(/,' THE NO OF VARIABLES IN EACH PARTITION IS',/,10I3)
* Send to the M step if ISPEC = 2 (groups specified)
IF(ISPEC.EQ.2) GO TO 100
* otherwise, print the parameter estimates
WRITE(7,52)
52 FORMAT(/,' MIXING PROPORTIONS')
WRITE(7,53)(PI(K),K=1,NG)
53 FORMAT(/,10F6.3)
DO 56 K=1,NG
DO 56 L=1,NPAR
IF(ITYPE(L).EQ.1) THEN
WRITE(7,54) K
54 FORMAT(/,2X,' THETA(K,J,M) FOR GROUP ',I2)
DO 64 J=ISV(L),IEV(L)
WRITE(7,55)(THETA(K,J,M),M=1,NCAT(J))
55 FORMAT(10F8.4)
64 CONTINUE
ELSE IF(ITYPE(L).EQ.2) THEN
WRITE(7,57) K,L
57 FORMAT(/,' FOR GROUP ',I2,' AND PARTITION',I2,
: ' THE MEAN IS')
WRITE(7,58)(EMU(K,L,J),J=1,IPC(L))
58 FORMAT(10F12.6)
ELSE
WRITE(7,57) K,L
WRITE(7,58)((EMUL(K,L,J,M),M=1,IM(L)),J=1,IPC(L))
DO 62 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) THEN
WRITE(7,54)
WRITE(7,55)(THETA(K,J,M),M=1,NCAT(J))
END IF
62 CONTINUE
END IF
56 CONTINUE
DO 59 K=1,NG
DO 59 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
WRITE(7,60) L,K
60 FORMAT(/,2X,'VARIANCE FOR PARTITION',I2,' AND GROUP',I2)
DO 63 I=1,IPC(L)
WRITE(7,61)(VARIX(K,L,I,J),J=1,IPC(L))
61 FORMAT(10F13.6)
63 CONTINUE
END IF
59 CONTINUE
DO 74 L=1,NPAR
IF (ITYPE(L).EQ.1) THEN
WRITE(7,75) L,IP(L),ITYPE(L)
75 FORMAT(' PARTITION',I3,' HAS',I2,' VARIABLES',/,' ITYPE',
: ' IS',I2,' HENCE A CATEGORICAL MODEL FOR THIS PARTITION')
ELSE IF (ITYPE(L).EQ.2) THEN
WRITE(7,76) L,IP(L),ITYPE(L)
76 FORMAT(' PARTITION',I3,' HAS',I2,' VARIABLES',/,' ITYPE',
: ' IS',I2,' HENCE A MVN MODEL FOR THIS PARTITION')
ELSE
WRITE(7,77) L,IP(L),ITYPE(L)
77 FORMAT(' PARTITION',I3,' HAS',I2,'VARIABLES',/,' ITYPE',
: ' IS',I2,' HENCE A LOCATION MODEL FOR THIS PARTITION')
END IF
74 CONTINUE
* E step of the EM algorithm.
* Estimate the complete data sufficient statistics given the
* data, & current values of means,variances and mixing proportions.
* call DETINV to calculate the determinants and inverses for each
* covariance matrix. This subroutine uses NAG to calculate
* the determinants and inverses.
ICNT=1
99999 DO 19 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
ITYPE_CURR=ITYPE(L)
IPC_CURR=IPC(L)
L_CURR=L
CALL DETINV(NG,L_CURR,IPC_CURR,ADET,VARIX,VARIN)
END IF
19 CONTINUE
ALL=0.0
DO 20 II = 1,NOBS
SDENS = 0.0
DO 21 K=1,NG
PROB(K,II)=1.0
APRODENS(K)=1.0
* evaluate the discrete variables contribution to the densities
DO 22 J=1,NVAR
IF((INTYPE(J).EQ.1).OR.(INTYPE(J).EQ.3))
: PROB(K,II) = THETA(K,J,IX(II,J))*PROB(K,II)
22 CONTINUE
* evaluate the continuous variables contribution to the densities
DO 23 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
DENS(K,L)=0.0
I1=0
* (i) evaluate the MVN contribution
IF(ITYPE(L).EQ.2) THEN
DO 24 I=ISV(L),IEV(L)
J1=0
I1=I1+1
DO 24 J=ISV(L),IEV(L)
J1=J1+1
DENS(K,L) = DENS(K,L)
: + (X(II,I)-EMU(K,L,I1))*VARIN(K,L,I1,J1)*(X(II,J)-EMU(K,L,J1))
24 CONTINUE
* (ii) evaluate the continuous location variables contribution
ELSE IF(ITYPE(L).EQ.3) THEN
DO 25 I=ISV(L),IEV(L)
IF(INTYPE(I).EQ.3) M=IX(II,I)
25 CONTINUE
DO 26 I=ISV(L),IEV(L)
IF (INTYPE(I).EQ.4) THEN
J1=0
I1=I1+1
DO 30 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.4) THEN
J1=J1+1
DENS(K,L)=DENS(K,L) + (X(II,I)-EMUL(K,L,I1,M))
: *VARIN(K,L,I1,J1)*(X(II,J)-EMUL(K,L,J1,M))
END IF
30 CONTINUE
END IF
26 CONTINUE
END IF
DENS(K,L) = DEXP(-0.5*DENS(K,L))
A=0.5*FLOAT(IPC(L))
DENS(K,L)=DENS(K,L)/((2.0*PIE)**(A)*DSQRT(ADET(K,L)))
APRODENS(K)=APRODENS(K)*DENS(K,L)
END IF
23 CONTINUE
APRODENS(K)=APRODENS(K)*PROB(K,II)*PI(K)
SDENS=SDENS+APRODENS(K)
21 CONTINUE
IF (SDENS.NE.0.0) THEN
DO 27 K=1,NG
Z(II,K)=APRODENS(K)/SDENS
27 CONTINUE
ALL=ALL+DLOG(SDENS)
ELSE
DO 28 K=1,NG
Z(II,K)=0.01
28 CONTINUE
WRITE(7,29)II
29 FORMAT(//'SUM OF DENSITY FUNCTIONS IS ZERO',
: 'FOR OBSERVATION',I4)
END IF
20 CONTINUE
* Check on convergence - look at the likelihood function
* If the absolute value of the difference in 2 likelihoods is
* less than a tolerance value the estimates are written out.
* A check is made on the number of iterations (200 max).
* statement 100 - the M step
* statement 500 - print out the current estimates (algorithm
* has converged)
* statement 501 - algorithm hasn't converged, current estimates
* are printed out.
CLOGLI(ICNT) = ALL
WRITE(7,888) ICNT,CLOGLI(ICNT)
888 FORMAT(1X,'FOR LOOP',I5,' LOGLIKELIHOOD IS',F16.8)
IF (ICNT.LE.10) GO TO 100
C=1.D-06
TOL=ABS(CLOGLI(ICNT) - CLOGLI(ICNT-10))
IF(TOL.LE.C) GO TO 500
IF(ICNT.GE.iter) GO TO 501
* M step of the EM algorithm
* Calculate an updated estimate of the parameters
* means and covariances.
* (i) the mixing proportions,
100 DO 101 K=1,NG
ZSUM(K)=0.0
DO 102 II=1,NOBS
ZSUM(K)=ZSUM(K) + Z(II,K)
102 CONTINUE
PI(K) = ZSUM(K)/NOBS
101 CONTINUE
* (ii) the conditional probabilities
DO 103 K=1,NG
DO 103 L=1,NPAR
IF(ITYPE(L).EQ.1) THEN
DO 104 J=ISV(L),IEV(L)
DO 104 M=1,NCAT(J)
THETA(K,J,M) = 0.0
DO 105 II=1,NOBS
IF (IX(II,J).EQ.M) THETA(K,J,M)
: = THETA(K,J,M) + Z(II,K)
105 CONTINUE
THETA(K,J,M)=THETA(K,J,M)/ZSUM(K)
104 CONTINUE
ELSE IF(ITYPE(L).EQ.2) THEN
* (iii) the means (EMU(K,L,J))
J1=0
DO 106 J=ISV(L),IEV(L)
J1=J1+1
XSUM(K,J1)=0.0
DO 107 II=1,NOBS
XSUM(K,J1)=XSUM(K,J1) + X(II,J)*Z(II,K)
107 CONTINUE
EMU(K,L,J1)=XSUM(K,J1)/ZSUM(K)
106 CONTINUE
* (iv) the location model parameters
* (i)the discrete variable
ELSE IF(ITYPE(L).EQ.3) THEN
DO 108 J=ISV(L),IEV(L)
IF(INTYPE(J).EQ.3) THEN
DO 109 M=1,NCAT(J)
THETA(K,J,M)=0.0
DO 110 II=1,NOBS
IF(IX(II,J).EQ.M) THETA(K,J,M)
: = THETA(K,J,M) + Z(II,K)
110 CONTINUE
THETA(K,J,M)=THETA(K,J,M)/ZSUM(K)
109 CONTINUE
END IF
108 CONTINUE
* (ii) the continuous variables the means EMUL(K,L,J,M)
DO 111 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) THEN
DO 112 M=1,IM(L)
J1=0
DO 112 JJ=ISV(L),IEV(L)
IF (INTYPE(JJ).EQ.4) THEN
J1=J1+1
XSUM2(K,J1,M)=0.0
ZM(K,M)=0.0
DO 113 II=1,NOBS
IF(IX(II,J).EQ.M) THEN
XSUM2(K,J1,M)=XSUM2(K,J1,M) +
: X(II,JJ)*Z(II,K)
ZM(K,M)=ZM(K,M)+Z(II,K)
END IF
113 CONTINUE
EMUL(K,L,J1,M)=XSUM2(K,J1,M)/ZM(K,M)
END IF
112 CONTINUE
END IF
111 CONTINUE
WRITE(7,601)K,((EMUL(K,L,J1,M),M=1,IM(L)),J1=1,IPC(L))
601 FORMAT(/2X,'FOR GROUP',I2,' EMUL',10F10.4)
END IF
103 CONTINUE
* Calculate updated estimates of the variances
* (i) the multivariate normal data
DO 115 K=1,NG
DO 116 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
DO 117 J=1,IPC(L)
DO 117 I=1,J
VAR(K,L,I,J)=0.0
117 CONTINUE
END IF
116 CONTINUE
DO 118 II=1,NOBS
DO 118 L=1,NPAR
IF (ITYPE(L).EQ.2) THEN
J1=0
DO 119 J=ISV(L),IEV(L)
I1=0
J1=J1+1
DO 119 I=ISV(L),ISV(L)+J1
I1=I1+1
VAR(K,L,I1,J1) = VAR(K,L,I1,J1) + (X(II,J)
: -EMU(K,L,J1))*(X(II,I)-EMU(K,L,I1))*Z(II,K)
119 CONTINUE
END IF
118 CONTINUE
* (ii) the continuous location data
DO 120 L=1,NPAR
IF (ITYPE(L).EQ.3) THEN
DO 121 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) THEN
DO 122 II=1,NOBS
DO 122 M=1,IM(L)
IF(IX(II,J).EQ.M) THEN
J1=0
DO 123 JJ=ISV(L),IEV(L)
IF (INTYPE(JJ).EQ.4) THEN
I1=0
J1=J1+1
DO 124 I=ISV(L),ISV(L)+J1
IF (INTYPE(I).EQ.4) THEN
I1=I1+1
VAR(K,L,I1,J1) = VAR(K,L,I1,J1)+(X(II,JJ)
: -EMUL(K,L,J1,M))*(X(II,I)-EMUL(K,L,I1,M))
: *Z(II,K)
END IF
124 CONTINUE
END IF
123 CONTINUE
END IF
122 CONTINUE
END IF
121 CONTINUE
END IF
120 CONTINUE
DO 126 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
DO 125 J=1,IPC(L)
DO 125 I=1,J
VAR(K,L,I,J)=VAR(K,L,I,J)/ZSUM(K)
VAR(K,L,J,I)=VAR(K,L,I,J)
125 CONTINUE
END IF
126 CONTINUE
115 CONTINUE
* Make a copy of the covariance matrix before we use NAG
DO 130 K=1,NG
DO 130 L=1,NPAR
IF(ITYPE(L).NE.1) THEN
DO 131 J=1,IPC(L)
DO 131 I=1,IPC(L)
VARIX(K,L,I,J)=VAR(K,L,I,J)
131 CONTINUE
END IF
130 CONTINUE
ICNT=ICNT+1
* send back to the E step
GO TO 99999
* Write out the current estimates of the parameters.
* (1) If the algorithm has not converged:-
501 WRITE(7,502)
502 FORMAT(//'----------------------------------------------------')
WRITE(7,503) iter
503 FORMAT(//' THE EM ALGORITHM HAS NOT CONVERGED AFTER ',I3,
: /,'ITERATIONS BUT THE CURRENT ESTIMATES OF THE PARAMETERS ',
:/,'WILL BE PRINTED OUT.')
WRITE(7,502)
* The parameters are to be written to 'EMPARAMEST.DAT' to be
* used as input for the PROGRAM MULTIMIX. ISPEC is set to 1.
OPEN(11, FILE='EMPARAMEST.OUT',STATUS='NEW')
ISPEC=1
WRITE(11,504) NG, NOBS, NVAR, NPAR, ISPEC
504 FORMAT(1X,5I6)
WRITE(11,505) (IP(L),L=1,NPAR)
WRITE(11,505) (IPC(L),L=1,NPAR)
WRITE(11,505) (ISV(L),L=1,NPAR)
WRITE(11,505) (IEV(L),L=1,NPAR)
WRITE(11,505) (ITYPE(L),L=1,NPAR)
WRITE(11,505) (INTYPE(J),J=1,NVAR)
WRITE(11,505) (NCAT(J),J=1,NVAR)
505 FORMAT(10I4)
WRITE(11,506) (PI(K),K=1,NG)
506 FORMAT(10F10.6)
DO 507 K=1,NG
DO 507 L=1,NPAR
IF (ITYPE(L).EQ.1) THEN
DO 508 J=ISV(L),IEV(L)
WRITE(11,509)(THETA(K,J,M),M=1,NCAT(J))
509 FORMAT(10F10.6)
508 CONTINUE
ELSE IF(ITYPE(L).EQ.2) THEN
WRITE(11,510) (EMU(K,L,J),J=1,1,IPC(L))
510 FORMAT(10F13.6)
ELSE
DO 511 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) THEN
WRITE(11,509)(THETA(K,J,M),M=1,NCAT(J))
END IF
511 CONTINUE
DO 512 J=1,IPC(L)
WRITE(11,510) (EMUL(K,L,J,M),M=1,IM(L))
512 CONTINUE
END IF
507 CONTINUE
DO 513 K=1,NG
DO 513 L=1,NPAR
IF (ITYPE(L).NE.1) THEN
DO 514 I=1,IPC(L)
WRITE(11,515)(VARIX(K,L,I,J),J=1,IPC(L))
515 FORMAT(10F13.6)
514 CONTINUE
END IF
513 CONTINUE
* (2) the current estimates of the parameters are printed out
* Estimates of the proportions in each group and loglikelihood
500 WRITE(7,888) ICNT,CLOGLI(ICNT)
DO 540 K=1,NG
WRITE(7,541) K,PI(K)
541 FORMAT(//'THE ESTIMATE OF THE MIXING PROPORTION IN GROUP ',I3,
: ' IS ', F10.8)
540 CONTINUE
* estimates of the probabilities for each group
DO 525 K=1,NG
DO 525 L=1,NPAR
WRITE(7,524)K,L
524 FORMAT(//,'THE CURRENT ESTIMATES FOR GROUP',I3,' AND'
: ,' PARTITION ',I3, ' ARE ')
IF (ITYPE(L).EQ.1) THEN
DO 528 J=ISV(L),IEV(L)
WRITE(7,529)J
529 FORMAT(/,' FOR VARIABLE ',I3,' THETA(K,J,M) IS')
WRITE(7,530) (THETA(K,J,M),M=1,NCAT(J))
530 FORMAT(10F10.6)
528 CONTINUE
ELSE IF(ITYPE(L).EQ.2) THEN
* Estimate of the means for each group.
WRITE(7,531) (EMU(K,L,J),J=1,IPC(L))
531 FORMAT(/,' THE MEAN FOR THIS PARTITION IS ',/,10F13.6)
* estimates of the location model parameters
ELSE IF(ITYPE(L).EQ.3) THEN
DO 533 J=ISV(L),IEV(L)
IF (INTYPE(J).EQ.3) THEN
WRITE(7,534)J,(THETA(K,J,M),M=1,NCAT(J))
534 FORMAT(/,' FOR VARIABLE',I3,' THETA(K,J,M)'
:,' IS',10F10.6)
END IF
533 CONTINUE
J1=0
DO 535 J=ISV(L),IEV(L)
IF(INTYPE(J).EQ.4) THEN
J1=J1+1
WRITE(7,536) (EMUL(K,L,J1,M),M=1,IM(L))
536 FORMAT(/,1X,'THE MEAN FOR THE CONTINUOUS LOCATION'
:,' VARIABLES IS',/,10F13.6)
END IF
535 CONTINUE
END IF
525 CONTINUE
* Estimates of the variances for each group.
DO 523 K=1,NG
WRITE(7,526)K
526 FORMAT(/,' THE CURRENT ESTIMATE OF THE COVARIANCE MATRIX FOR',
:' GROUP',I3)
DO 523 L=1,NPAR
IF(ITYPE(L).NE.1) THEN
WRITE(7,522)L
522 FORMAT(' AND PARTITION ',I3)
DO 543 I=1,IPC(L)
WRITE(7,527)(VAR(K,L,I,J),J=1,IPC(L))
527 FORMAT(10F15.6)
543 CONTINUE
END IF
523 CONTINUE
* Determine the assignment of the observations to groups
DO 516 I=1,NOBS
IMAX = 1
DO 517 K=2,NG
IF(Z(I,K).GT.Z(I,IMAX)) THEN
IMAX=K
END IF
517 CONTINUE
IGP(I)=IMAX
516 CONTINUE
WRITE(7,542)
542 FORMAT(/,1X,'THE ASSIGNMENT OF OBSERVATIONS TO GROUPS',/)
WRITE(7,518) (IGP(I),I=1,NOBS)
518 FORMAT(10I3)
DO 537 K=1,NG
NUM(K)=0
537 CONTINUE
DO 538 I=1,NOBS
DO 538 K=1,NG
IF(IGP(I).EQ.K) NUM(K)=NUM(K)+1
538 CONTINUE
WRITE(7,539)(NUM(K),K=1,NG)
539 FORMAT(1X,/,' TOTAL NUMBERS IN EACH GROUP',/,10I5)
* have a look at the Zij,s, and write out the assigned groups and
* the Zij's to GROUPS.OUT
WRITE(7,521)
521 FORMAT(//'THE ESTIMATES OF THE POSTERIOR PROBALITIES')
DO 519 I=1,NOBS
WRITE(7,520)I,(Z(I,K),K=1,NG)
520 FORMAT('OBSERVATION',I4,2X,10F10.6)
WRITE(12,532) IGP(I), (Z(I,K),K=1,NG)
532 FORMAT(1X,I2,1X,10F9.6)
519 CONTINUE
END
SUBROUTINE DETINV(NG,L_CURR,IPC_CURR,ADET,VARIX,VARIN)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
PARAMETER (ik6=6,ip15=15,IIP=ip15+1)
DIMENSION VARIX(ik6,ip15,ip15,ip15),VARIN(ik6,ip15,ip15,ip15),
: ADET(ik6,ip15)
INTEGER IA,IT,NNULL
REAL*8 TEMP(100),WKSPCE(100),B(100),TOL,CMY(100),PROD,RMAX
IA=IIP
IB=IIP
NNULL = 0
DO 201 K=1,NG
IT=0
TOL=0.0
N=IPC_CURR
DO 202 J=1,IPC_CURR
TOL=TOL+SQRT(VARIX(K,L_CURR,J,J))
DO 202 I=1,J
IT=IT+1
TEMP(IT) = VARIX(K,L_CURR,I,J)
202 CONTINUE
TOL=(TOL/FLOAT(IPC_CURR))*0.000001
CALL SYMINV(TEMP,N,B,WKSPCE,NULL,IER,RMAX,CMY,TOL)
IF (IER.NE.0) THEN
WRITE(7,555) K,IER
555 FORMAT (/2X,'Terminal error in SYMINV for matrix',I3,
: ' as IFAULT is ',I3)
RETURN
ELSE
IF (NULL.NE.0) THEN
WRITE (7,556) K,NULL
556 FORMAT (/2X,'Rank deficiency of covariance matrix'
: ,I3,' is',I3)
WRITE (*,556) K,NULL
NNULL=NNULL+1
ENDIF
IT=0
PROD=1.0
DO 220 J=1,IPC_CURR
JJ=J*(J+1)/2
PROD=PROD*CMY(JJ)*CMY(JJ)
DO 220 I=1,J
IT=IT+1
VARIN(K,L_CURR,I,J)=B(IT)
VARIN(K,L_CURR,J,I)=VARIN(K,L_CURR,I,J)
220 CONTINUE
ADET(K,L_CURR)=PROD
ENDIF
201 CONTINUE
NULL=NNULL
RETURN
END
subroutine syminv(a,n,c,w,nullty,ifault,rmax,CMY,TOL)
implicit double precision (a-h,o-z)
c
c algorithm as7, applied statistics, vol.17, 1968.
c
c arguments:-
c a() = input, the symmetric matrix to be inverted, stored in
c lower triangular form
c n = input, order of the matrix
c c() = output, the inverse of a (a generalized inverse if c is
c singular), also stored in lower triangular.
c c and a may occupy the same locations.
c w() = workspace, dimension at least n.
c nullty = output, the rank deficiency of a.
c ifault = output, error indicator
c = 1 if n < 1
c = 2 if a is not +ve semi-definite
c = 0 otherwise
c rmax = output, approximate bound on the accuracy of the diagonal
c elements of c. e.g. if rmax = 1.e-04 then the diagonal
c elements of c will be accurate to about 4 dec. digits.
c
c latest revision - 18 april 1981
c
c***************************************************************************
c
dimension a(1),c(1),w(n),CMY(100)
nrow=n
ifault=1
if(nrow.le.0) go to 100
ifault=0
c
c cholesky factorization of a, result in c
c
call chola(a,nrow,c,nullty,ifault,rmax,w,TOL)
if(ifault.ne.0) go to 100
c
c invert c & form the product (cinv)'*cinv, where cinv is the inverse
c of c, row by row starting with the last row.
c irow = the row number, ndiag = location of last element in the row.
c
nn=nrow*(nrow+1)/2
do 200 imy=1,nn
200 cmy(imy)=c(imy)
irow=nrow
ndiag=nn
10 if(c(ndiag).eq.0.0) go to 60
l=ndiag
do 20 i=irow,nrow
w(i)=c(l)
l=l+i
20 continue
icol=nrow
jcol=nn
mdiag=nn
30 l=jcol
x=0.0
if(icol.eq.irow) x=1.0/w(irow)
k=nrow
40 if(k.eq.irow) go to 50
x=x-w(k)*c(l)
k=k-1
l=l-1
if(l.gt.mdiag) l=l-k+1
go to 40
50 c(l)=x/w(irow)
if(icol.eq.irow) go to 80
mdiag=mdiag-icol
icol=icol-1
jcol=jcol-1
go to 30
60 l=ndiag
do 70 j=irow,nrow
c(l)=0.0
l=l+j
70 continue
80 ndiag=ndiag-irow
irow=irow-1
if(irow.ne.0) go to 10
100 return
end
c
c
subroutine chola(a,n,u,nullty,ifault,rmax,r,TOL)
implicit double precision (a-h,o-z)
c
c algorithm as6, applied statistics, vol.17, 1968, with
c modifications by a.j.miller
c
c arguments:-
c a() = input, a +ve definite matrix stored in lower-triangular
c form.
c n = input, the order of a
c u() = output, a lower triangular matrix such that u*u' = a.
c a & u may occupy the same locations.
c nullty = output, the rank deficiency of a.
c ifault = output, error indicator
c = 1 if n < 1
c = 2 if a is not +ve semi-definite
c = 0 otherwise
c rmax = output, an estimate of the relative accuracy of the
c diagonal elements of u.
c r() = output, array containing bounds on the relative accuracy
c of each diagonal element of u.
c
c latest revision - 18 april 1981
c
c***************************************************************************
c
dimension a(1),u(1),r(n)
c
c eta should be set equal to the smallest +ve value such that
c 1.0 + eta is calculated as being greater than 1.0 in the accuracy
c being used.
c
C data eta/1.e-07/
ETA=TOL
ifault=1
if(n.le.0) go to 100
ifault=2
nullty=0
rmax=eta
r(1)=eta
j=1
k=0
c
c factorize column by column, icol = column no.
c
do 80 icol=1,n
l=0
c
c irow = row number within column icol
c
do 40 irow=1,icol
k=k+1
w=a(k)
if(irow.eq.icol) rsq=(w*eta)**2
m=j
do 10 i=1,irow
l=l+1
if(i.eq.irow) go to 20
w=w-u(l)*u(m)
if(irow.eq.icol) rsq=rsq+(u(l)**2*r(i))**2
m=m+1
10 continue
20 if(irow.eq.icol) go to 50
if(u(l).eq.0.0) go to 30
u(k)=w/u(l)
go to 40
30 u(k)=0.0
if(abs(w).gt.abs(rmax*a(k))) go to 100
40 continue
c
c end of row, estimate relative accuracy of diagonal element.
c
50 rsq=sqrt(rsq)
if(abs(w).le.5.*rsq) go to 60
if(w.lt.0.0) go to 100
u(k)=sqrt(w)
r(i)=rsq/w
if(r(i).gt.rmax) rmax=r(i)
go to 70
60 u(k)=0.0
nullty=nullty+1
70 j=j+icol
80 continue
ifault=0.0
100 return
end
|