1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
|
/*
* demod_flex.c
*
* Copyright 2004,2006,2010 Free Software Foundation, Inc.
* Copyright (C) 2015 Craig Shelley (craig@microtron.org.uk)
*
* FLEX Radio Paging Decoder - Adapted from GNURadio for use with Multimon
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* Modification (to this file) made by Ryan Farley (rfarley3@github)
* - Issue #139 !160 handle edge cases for start and end offsets (long vs short, single vs group)
* - Resolve type ambiguity to improve stability after Raspberry Pi compile
* - Compare algorithms to other open source libraries to reconcile group bit, frag bit, and capcode decode
* - Refactor message printing to single line, only printables, encoded % fmtstr directives
* Version 0.9.3v (28 Jan 2020)
* Modification made by bierviltje and implemented by Bruce Quinton (Zanoroy@gmail.com)
* - Issue #123 created by bierviltje (https://github.com/bierviltje) - Feature request: FLEX: put group messages in an array/list
* - This also changed the delimiter to a | rather than a space
* Version 0.9.2v (03 Apr 2019)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Issue #120 created by PimHaarsma - Flex Tone-Only messages with short numeric body Bug fixed using code documented in the ticket system
* Version 0.9.1v (10 Jan 2019)
* Modification (to this file) made by Rob0101
* Fixed marking messages with K,F,C - One case had a 'C' marked as a 'K'
* Version 0.9.0v (22 May 2018)
* Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
* - Addded Define at top of file to modify the way missed group messages are reported in the debug output (default is 1; report missed capcodes on the same line)
* REPORT_GROUP_CODES 1 // Report each cleared faulty group capcode : 0 = Each on a new line; 1 = All on the same line;
* Version 0.8.9 (20 Mar 2018)
* Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
* - Issue #101 created by bertinhollan (https://github.com/bertinholland): Bug flex: Wrong split up group message after a data corruption frame.
* - Added logic to the FIW decoding that checks for any 'Group Messages' and if the frame has past them remove the group message and log output
* - The following settings (at the top of this file, just under these comments) have changed from:
* PHASE_LOCKED_RATE 0.150
* PHASE_UNLOCKED_RATE 0.150
* these new settings appear to work better when attempting to locate the Sync lock in the message preamble.
* Version 0.8.8v (20 APR 2018)
* Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com)
* - Issue #101 created by bertinhollan (https://github.com/bertinholland): Bug flex: Wrong split up group message after a data corruption frame.
* Version 0.8.7v (11 APR 2018)
* Modification (to this file) made by Bruce Quinton (zanoroy@gmail.com) and Rob0101 (as seen on github: https://github.com/rob0101)
* - Issue *#95 created by rob0101: '-a FLEX dropping first character of some message on regular basis'
* - Implemented Rob0101's suggestion of K, F and C flags to indicate the message fragmentation:
* 'K' message is complete and O'K' to display to the world.
* 'F' message is a 'F'ragment and needs a 'C'ontinuation message to complete it. Message = Fragment + Continuation
* 'C' message is a 'C'ontinuation of another fragmented message
* Version 0.8.6v (18 Dec 2017)
* Modification (to this file) made by Bruce Quinton (Zanoroy@gmail.com) on behalf of bertinhollan (https://github.com/bertinholland)
* - Issue #87 created by bertinhollan: Reported issue is that the flex period timeout was too short and therefore some group messages were not being processed correctly
* After some testing bertinhollan found that increasing the timeout period fixed the issue in his area. I have done further testing in my local
* area and found the change has not reduced my success rate. I think the timeout is a localisation setting and I have added "DEMOD_TIMEOUT"
* to the definitions in the top of this file (the default value is 100 bertinhollan's prefered value, changed up from 50)
* Version 0.8.5v (08 Sep 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Issue #78 - Found a problem in the length detection sequence, modified the if statement to ensure the message length is
* only checked for Aplha messages, the other types calculate thier length while decoding
* Version 0.8.4v (05 Sep 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Found a bug in the code that was not handling multiple group messages within the same frame,
* and the long address bit was being miss treated in the same cases. Both issue have been fixed but further testing will help.
* Version 0.8.3v (22 Jun 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - I had previously tagged Group Messages as GPN message types,
* this was my own identification rather than a Flex standard type.
* Now that I have cleaned up all identified (so far) issues I have changed back to the correct Flex message type of ALN (Alpha).
* Version 0.8.2v (21 Jun 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Fixed group messaging capcode issue - modified the Capcode Array to be int64_t rather than int (I was incorrectly casting the long to an int)
* Version 0.8.1v (16 Jun 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Added Debugging to help track the group messaging issues
* - Improved Alpha output and removed several loops to improve CPU cycles
* Version 0.8v (08 Jun 2017)
* Modification made by Bruce Quinton (Zanoroy@gmail.com)
* - Added Group Messaging
* - Fixed Phase adjustments (phasing as part of Symbol identification)
* - Fixed Alpha numeric length adjustments to stop "Invalid Vector" errors
* - Fixed numeric message treatment
* - Fixed invalid identification of "unknown" messages
* - Added 3200 2 fsk identification to all more message types to be processed (this was a big deal for NZ)
* - Changed uint to int variables
*
*/
/* ---------------------------------------------------------------------- */
#include "multimon.h"
#include "filter.h"
#include "BCHCode.h"
#include <math.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
/* ---------------------------------------------------------------------- */
#define FREQ_SAMP 22050
#define FILTLEN 1
#define REPORT_GROUP_CODES 1 // Report each cleared faulty group capcode : 0 = Each on a new line; 1 = All on the same line;
#define FLEX_SYNC_MARKER 0xA6C6AAAAul // Synchronisation code marker for FLEX
#define SLICE_THRESHOLD 0.667 // For 4 level code, levels 0 and 3 have 3 times the amplitude of levels 1 and 2, so quantise at 2/3
#define DC_OFFSET_FILTER 0.010 // DC Offset removal IIR filter response (seconds)
#define PHASE_LOCKED_RATE 0.045 // Correction factor for locked state
#define PHASE_UNLOCKED_RATE 0.050 // Correction factor for unlocked state
#define LOCK_LEN 24 // Number of symbols to check for phase locking (max 32)
#define IDLE_THRESHOLD 0 // Number of idle codewords allowed in data section
#define CAPCODES_INDEX 0
#define DEMOD_TIMEOUT 100 // Maximum number of periods with no zero crossings before we decide that the system is not longer within a Timing lock.
#define GROUP_BITS 17 // Centralized maximum of group msg cache
#define PHASE_WORDS 88 // per spec, there are 88 4B words per frame
// there are 3 chars per message word (mw)
// there are at most 88 words per frame's phase buffer of a page
// but at least 1 BIW 1 AW 1 VW, so max 85 data words (dw) for text
// each dw is 3 chars of 7b ASCII (21 bits of text, 11 bits of checksum)
// this is 256, BUT each char could need to be escaped (%, \n, \r, \t), so double it
#define MAX_ALN 512 // max possible ALN characters
enum Flex_PageTypeEnum {
FLEX_PAGETYPE_SECURE,
FLEX_PAGETYPE_SHORT_INSTRUCTION,
FLEX_PAGETYPE_TONE,
FLEX_PAGETYPE_STANDARD_NUMERIC,
FLEX_PAGETYPE_SPECIAL_NUMERIC,
FLEX_PAGETYPE_ALPHANUMERIC,
FLEX_PAGETYPE_BINARY,
FLEX_PAGETYPE_NUMBERED_NUMERIC
};
enum Flex_StateEnum {
FLEX_STATE_SYNC1,
FLEX_STATE_FIW,
FLEX_STATE_SYNC2,
FLEX_STATE_DATA
};
struct Flex_Demodulator {
unsigned int sample_freq;
double sample_last;
int locked;
int phase;
unsigned int sample_count;
unsigned int symbol_count;
double envelope_sum;
int envelope_count;
uint64_t lock_buf;
int symcount[4];
int timeout;
int nonconsec;
unsigned int baud; // Current baud rate
};
struct Flex_GroupHandler {
int64_t GroupCodes[GROUP_BITS][1000];
int GroupCycle[GROUP_BITS];
int GroupFrame[GROUP_BITS];
};
struct Flex_Modulation {
double symbol_rate;
double envelope;
double zero;
};
struct Flex_State {
unsigned int sync2_count;
unsigned int data_count;
unsigned int fiwcount;
enum Flex_StateEnum Current;
enum Flex_StateEnum Previous;
};
struct Flex_Sync {
unsigned int sync; // Outer synchronization code
unsigned int baud; // Baudrate of SYNC2 and DATA
unsigned int levels; // FSK encoding of SYNC2 and DATA
unsigned int polarity; // 0=Positive (Normal) 1=Negative (Inverted)
uint64_t syncbuf;
};
struct Flex_FIW {
unsigned int rawdata;
unsigned int checksum;
unsigned int cycleno;
unsigned int frameno;
unsigned int fix3;
};
struct Flex_Phase {
unsigned int buf[PHASE_WORDS];
int idle_count;
};
struct Flex_Data {
int phase_toggle;
unsigned int data_bit_counter;
struct Flex_Phase PhaseA;
struct Flex_Phase PhaseB;
struct Flex_Phase PhaseC;
struct Flex_Phase PhaseD;
};
struct Flex_Decode {
enum Flex_PageTypeEnum type;
int long_address;
int64_t capcode;
struct BCHCode * BCHCode;
};
struct Flex_Next {
struct Flex_Demodulator Demodulator;
struct Flex_Modulation Modulation;
struct Flex_State State;
struct Flex_Sync Sync;
struct Flex_FIW FIW;
struct Flex_Data Data;
struct Flex_Decode Decode;
struct Flex_GroupHandler GroupHandler;
};
static int is_alphanumeric_page(struct Flex_Next * flex) {
if (flex==NULL) return 0;
return (flex->Decode.type == FLEX_PAGETYPE_ALPHANUMERIC ||
flex->Decode.type == FLEX_PAGETYPE_SECURE);
}
static int is_numeric_page(struct Flex_Next * flex) {
if (flex==NULL) return 0;
return (flex->Decode.type == FLEX_PAGETYPE_STANDARD_NUMERIC ||
flex->Decode.type == FLEX_PAGETYPE_SPECIAL_NUMERIC ||
flex->Decode.type == FLEX_PAGETYPE_NUMBERED_NUMERIC);
}
static int is_tone_page(struct Flex_Next * flex) {
if (flex==NULL) return 0;
return (flex->Decode.type == FLEX_PAGETYPE_TONE);
}
static int is_binary_page(struct Flex_Next * flex) {
if (flex==NULL) return 0;
return (flex->Decode.type == FLEX_PAGETYPE_BINARY);
}
static unsigned int count_bits(struct Flex_Next * flex, unsigned int data) {
if (flex==NULL) return 0;
#ifdef USE_BUILTIN_POPCOUNT
return __builtin_popcount(data);
#else
unsigned int n = (data >> 1) & 0x77777777;
data = data - n;
n = (n >> 1) & 0x77777777;
data = data - n;
n = (n >> 1) & 0x77777777;
data = data - n;
data = (data + (data >> 4)) & 0x0f0f0f0f;
data = data * 0x01010101;
return data >> 24;
#endif
}
static int bch3121_fix_errors(struct Flex_Next * flex, uint32_t * data_to_fix, char PhaseNo) {
if (flex==NULL) return -1;
int i=0;
int recd[31];
/*Convert the data pattern into an array of coefficients*/
unsigned int data=*data_to_fix;
for (i=0; i<31; i++) {
recd[i] = (data>>30)&1;
data<<=1;
}
/*Decode and correct the coefficients*/
int decode_error=BCHCode_Decode(flex->Decode.BCHCode, recd);
/*Decode successful?*/
if (!decode_error) {
/*Convert the coefficient array back to a bit pattern*/
data=0;
for (i=0; i<31; i++) {
data<<=1;
data|=recd[i];
}
/*Count the number of fixed errors*/
int fixed=count_bits(flex, (*data_to_fix & 0x7FFFFFFF) ^ data);
if (fixed>0) {
verbprintf(3, "FLEX_NEXT: Phase %c Fixed %i errors @ 0x%08x (0x%08x -> 0x%08x)\n", PhaseNo, fixed, (*data_to_fix&0x7FFFFFFF) ^ data, (*data_to_fix&0x7FFFFFFF), data );
}
/*Write the fixed data back to the caller*/
*data_to_fix=data;
} else {
verbprintf(3, "FLEX_NEXT: Phase %c Data corruption - Unable to fix errors.\n", PhaseNo);
}
return decode_error;
}
static unsigned int flex_sync_check(struct Flex_Next * flex, uint64_t buf) {
if (flex==NULL) return 0;
// 64-bit FLEX sync code:
// AAAA:BBBBBBBB:CCCC
//
// Where BBBBBBBB is always 0xA6C6AAAA
// and AAAA^CCCC is 0xFFFF
//
// Specific values of AAAA determine what bps and encoding the
// packet is beyond the frame information word
//
// First we match on the marker field with a hamming distance < 4
// Then we match on the outer code with a hamming distance < 4
unsigned int marker = (buf & 0x0000FFFFFFFF0000ULL) >> 16;
unsigned short codehigh = (buf & 0xFFFF000000000000ULL) >> 48;
unsigned short codelow = ~(buf & 0x000000000000FFFFULL);
int retval=0;
if (count_bits(flex, marker ^ FLEX_SYNC_MARKER) < 4 && count_bits(flex, codelow ^ codehigh) < 4 ) {
retval=codehigh;
} else {
retval=0;
}
return retval;
}
static unsigned int flex_sync(struct Flex_Next * flex, unsigned char sym) {
if (flex==NULL) return 0;
int retval=0;
flex->Sync.syncbuf = (flex->Sync.syncbuf << 1) | ((sym < 2)?1:0);
retval=flex_sync_check(flex, flex->Sync.syncbuf);
if (retval!=0) {
flex->Sync.polarity=0;
} else {
/*If a positive sync pattern was not found, look for a negative (inverted) one*/
retval=flex_sync_check(flex, ~flex->Sync.syncbuf);
if (retval!=0) {
flex->Sync.polarity=1;
}
}
return retval;
}
static void decode_mode(struct Flex_Next * flex, unsigned int sync_code) {
if (flex==NULL) return;
// Something is off with these modes:
// * Where is 6400/4?
// * Why are there two 3200/4?
// * Why is there a 1600/4?
struct {
int sync;
unsigned int baud;
unsigned int levels;
} flex_modes[] = {
{ 0x870C, 1600, 2 },
{ 0xB068, 1600, 4 },
{ 0x7B18, 3200, 2 },
{ 0xDEA0, 3200, 4 },
{ 0x4C7C, 3200, 4 },
{0,0,0}
};
int x=0;
int i=0;
for (i=0; flex_modes[i].sync!=0; i++) {
if (count_bits(flex, flex_modes[i].sync ^ sync_code) < 4) {
flex->Sync.sync = sync_code;
flex->Sync.baud = flex_modes[i].baud;
flex->Sync.levels = flex_modes[i].levels;
x = 1;
break;
}
}
if(x==0){
verbprintf(3, "FLEX_NEXT: Sync Code not found, defaulting to 1600bps 2FSK\n");
}
}
static void read_2fsk(struct Flex_Next * flex, unsigned int sym, unsigned int * dat) {
if (flex==NULL) return;
*dat = (*dat >> 1) | ((sym > 1)?0x80000000:0);
}
static int decode_fiw(struct Flex_Next * flex) {
if (flex==NULL) return -1;
unsigned int fiw = flex->FIW.rawdata;
int decode_error = bch3121_fix_errors(flex, &fiw, 'F');
if (decode_error) {
verbprintf(3, "FLEX_NEXT: Unable to decode FIW, too much data corruption\n");
return 1;
}
// The only relevant bits in the FIW word for the purpose of this function
// are those masked by 0x001FFFFF.
flex->FIW.checksum = fiw & 0xF;
flex->FIW.cycleno = (fiw >> 4) & 0xF;
flex->FIW.frameno = (fiw >> 8) & 0x7F;
flex->FIW.fix3 = (fiw >> 15) & 0x3F;
unsigned int checksum = (fiw & 0xF);
checksum += ((fiw >> 4) & 0xF);
checksum += ((fiw >> 8) & 0xF);
checksum += ((fiw >> 12) & 0xF);
checksum += ((fiw >> 16) & 0xF);
checksum += ((fiw >> 20) & 0x01);
checksum &= 0xF;
if (checksum == 0xF) {
int timeseconds = flex->FIW.cycleno*4*60 + flex->FIW.frameno*4*60/128;
verbprintf(2, "FLEX_NEXT: FrameInfoWord: cycleno=%02i frameno=%03i fix3=0x%02x time=%02i:%02i\n",
flex->FIW.cycleno,
flex->FIW.frameno,
flex->FIW.fix3,
timeseconds/60,
timeseconds%60);
// Lets check the FrameNo against the expected group message frames, if we have 'Missed a group message' tell the user and clear the Cap Codes
for(int g = 0; g < GROUP_BITS ;g++) {
// Do we have a group message pending for this groupbit?
if(flex->GroupHandler.GroupFrame[g] >= 0)
{
int Reset = 0;
verbprintf(4, "FLEX_NEXT: GroupBit %i, FrameNo: %i, Cycle No: %i target Cycle No: %i\n", g, flex->GroupHandler.GroupFrame[g], flex->GroupHandler.GroupCycle[g], (int)flex->FIW.cycleno);
// Now lets check if its expected in this frame..
if((int)flex->FIW.cycleno == flex->GroupHandler.GroupCycle[g])
{
if(flex->GroupHandler.GroupFrame[g] < (int)flex->FIW.frameno)
{
Reset = 1;
}
}
// Check if we should have sent a group message in the previous cycle
else if(flex->FIW.cycleno == 0)
{
if(flex->GroupHandler.GroupCycle[g] == 15)
{
Reset = 1;
}
}
// If we are waiting for the cycle to roll over then move onto the next for loop item
else if(flex->FIW.cycleno == 15 && flex->GroupHandler.GroupCycle[g] == 0)
{
continue;
}
// Otherwise if the target cycle is less than the current cycle, reset the data
else if(flex->GroupHandler.GroupCycle[g] < (int)flex->FIW.cycleno)
{
Reset = 1;
}
if(Reset == 1)
{
int endpoint = flex->GroupHandler.GroupCodes[g][CAPCODES_INDEX];
if(REPORT_GROUP_CODES > 0)
{
verbprintf(3,"FLEX_NEXT: Group messages seem to have been missed; Groupbit: %i; Total Capcodes: %i; Clearing Data; Capcodes: ", g, endpoint);
}
for(int capIndex = 1; capIndex <= endpoint; capIndex++)
{
if(REPORT_GROUP_CODES == 0)
{
verbprintf(3,"FLEX_NEXT: Group messages seem to have been missed; Groupbit: %i; Clearing data; Capcode: [%010" PRId64 "]\n", g, flex->GroupHandler.GroupCodes[g][capIndex]);
}
else
{
if(capIndex > 1)
{
verbprintf(3,",");
}
verbprintf(3,"[%010" PRId64 "]", flex->GroupHandler.GroupCodes[g][capIndex]);
}
}
if(REPORT_GROUP_CODES > 0)
{
verbprintf(3,"\n");
}
// reset the value
flex->GroupHandler.GroupCodes[g][CAPCODES_INDEX] = 0;
flex->GroupHandler.GroupFrame[g] = -1;
flex->GroupHandler.GroupCycle[g] = -1;
}
}
}
return 0;
} else {
verbprintf(3, "FLEX_NEXT: Bad Checksum 0x%x\n", checksum);
return 1;
}
}
/* Add a character to ALN messages, but avoid buffer overflows and special characters */
static unsigned int add_ch(unsigned char ch, unsigned char* buf, unsigned int idx) {
// avoid buffer overflow that has been happening
if (idx >= MAX_ALN) {
verbprintf(3, "FLEX_NEXT: idx %u >= MAX_ALN %u\n", idx, MAX_ALN);
return 0;
}
// TODO sanitize % or you will have uncontrolled format string vuln
// Originally, this only avoided storing ETX (end of text, 0x03).
// At minimum you'll also want to avoid storing NULL (str term, 0x00),
// otherwise verbprintf will truncate the message.
// ex: if (ch != 0x03 && ch != 0x00) { buf[idx] = ch; return 1; }
// But while we are here, make it print friendly and get it onto a single line
// * remove awkward ctrl chars (del, bs, bell, vertical tab, etc)
// * encode valuable ctrl chars (new line/line feed, carriage ret, tab)
// NOTE: if you post process FLEX ALN output by sed/grep/awk etc on non-printables
// then double check this doesn't mess with your pipeline
if (ch == 0x09 && idx < (MAX_ALN - 2)) { // '\t'
buf[idx] = '\\';
buf[idx + 1] = 't';
return 2;
}
if (ch == 0x0a && idx < (MAX_ALN - 2)) { // '\n'
buf[idx] = '\\';
buf[idx + 1] = 'n';
return 2;
}
if (ch == 0x0d && idx < (MAX_ALN - 2)) { // '\r'
buf[idx] = '\\';
buf[idx + 1] = 'r';
return 2;
}
// unixinput.c::_verbprintf uses this output as a format string
// which introduces an uncontrolled format string vulnerability
// and also, generally, risks stack corruption
if (ch == '%') {
if (idx < (MAX_ALN - 2)) {
buf[idx] = '%';
buf[idx + 1] = '%';
return 2;
}
return 0;
}
// only store ASCII printable
if (ch >= 32 && ch <= 126) {
buf[idx] = ch;
return 1;
}
// if you want all non-printables, show as hex, but also make MAX_ALN 1024
/* if (idx < (MAX_ALN - 4)) {
sprintf(buf + idx, "\\x%02x", ch);
return 4;
}*/
return 0;
}
static void parse_alphanumeric(struct Flex_Next * flex, unsigned int * phaseptr, unsigned int mw1, unsigned int len, int frag, int cont, int flex_groupmessage, int flex_groupbit) {
if (flex==NULL) return;
char frag_flag = '?';
if (cont == 0 && frag == 3) frag_flag = 'K'; // complete, ready to send
if (cont == 0 && frag != 3) frag_flag = 'C'; // incomplete until appended to 1 or more 'F's
if (cont == 1 ) frag_flag = 'F'; // incomplete until a 'C' fragment is appended
verbprintf(0, "%1d.%1d.%c|", frag, cont, frag_flag);
unsigned char message[MAX_ALN];
memset(message, '\0', MAX_ALN);
int currentChar = 0;
// (mw + i) < PHASE_WORDS (aka mw+len<=PW) enforced within decode_phase
for (unsigned int i = 0; i < len; i++) {
unsigned int dw = phaseptr[mw1 + i];
if (i > 0 || frag != 0x03) {
currentChar += add_ch(dw & 0x7Fl, message, currentChar);
}
currentChar += add_ch((dw >> 7) & 0x7Fl, message, currentChar);
currentChar += add_ch((dw >> 14) & 0x7Fl, message, currentChar);
}
message[currentChar] = '\0';
// Implemented bierviltje code from ticket: https://github.com/EliasOenal/multimon-ng/issues/123#
if(flex_groupmessage == 1) {
int endpoint = flex->GroupHandler.GroupCodes[flex_groupbit][CAPCODES_INDEX];
for(int g = 1; g <= endpoint;g++)
{
verbprintf(1, "FLEX Group message output: Groupbit: %i Total Capcodes; %i; index %i; Capcode: [%010" PRId64 "]\n", flex_groupbit, endpoint, g, flex->GroupHandler.GroupCodes[flex_groupbit][g]);
verbprintf(0, "%010" PRId64 "|", flex->GroupHandler.GroupCodes[flex_groupbit][g]);
}
// reset the value
flex->GroupHandler.GroupCodes[flex_groupbit][CAPCODES_INDEX] = 0;
flex->GroupHandler.GroupFrame[flex_groupbit] = -1;
flex->GroupHandler.GroupCycle[flex_groupbit] = -1;
}
verbprintf(0, "%s", message);
}
static void parse_numeric(struct Flex_Next * flex, unsigned int * phaseptr, int j) {
if (flex==NULL) return;
unsigned const char flex_bcd[17] = "0123456789 U -][";
int w1 = phaseptr[j] >> 7;
int w2 = w1 >> 7;
w1 = w1 & 0x7f;
w2 = (w2 & 0x07) + w1; // numeric message is 7 words max
// Get first dataword from message field or from second
// vector word if long address
int dw;
if(!flex->Decode.long_address) {
dw = phaseptr[w1];
w1++;
w2++;
} else {
dw = phaseptr[j+1];
}
unsigned char digit = 0;
int count = 4;
if(flex->Decode.type == FLEX_PAGETYPE_NUMBERED_NUMERIC) {
count += 10; // Skip 10 header bits for numbered numeric pages
} else {
count += 2; // Otherwise skip 2
}
int i;
for(i = w1; i <= w2; i++) {
int k;
for(k = 0; k < 21; k++) {
// Shift LSB from data word into digit
digit = (digit >> 1) & 0x0F;
if(dw & 0x01) {
digit ^= 0x08;
}
dw >>= 1;
if(--count == 0) {
// The following if statement removes spaces between the numbers
if(digit != 0x0C) {// Fill
verbprintf(0, "%c", flex_bcd[digit]);
}
count = 4;
}
}
dw = phaseptr[i];
}
}
static void parse_tone_only(struct Flex_Next * flex, unsigned int * phaseptr, int j) {
if (flex==NULL) return;
unsigned const char flex_bcd[17] = "0123456789 U -][";
// message type
// 1=tone-only, 0=short numeric
int w1 = phaseptr[j] >> 7 & 0x03;
if(!w1)
{
unsigned char digit = 0;
int i;
for (i=9; i<=17; i+=4)
{
digit = (phaseptr[j] >> i) & 0x0f;
verbprintf(0, "%c", flex_bcd[digit]);
}
if (flex->Decode.long_address)
{
for (i=0; i<=16; i+=4)
{
digit = (phaseptr[j+1] >> i) & 0x0f;
verbprintf(0, "%c", flex_bcd[digit]);
}
}
}
}
static void parse_binary(struct Flex_Next * flex, unsigned int * phaseptr, unsigned int mw1, unsigned int len) {
if (flex==NULL) return;
for (unsigned int i = 0; i < len; i++) {
verbprintf(0, "%08x", phaseptr[mw1 + i]);
if (i < (len - 1))
verbprintf(0, " ");
}
}
static void decode_phase(struct Flex_Next * flex, char PhaseNo) {
if (flex==NULL) return;
verbprintf(3, "FLEX_NEXT: Decoding phase %c\n", PhaseNo);
uint32_t *phaseptr=NULL;
switch (PhaseNo) {
case 'A': phaseptr=flex->Data.PhaseA.buf; break;
case 'B': phaseptr=flex->Data.PhaseB.buf; break;
case 'C': phaseptr=flex->Data.PhaseC.buf; break;
case 'D': phaseptr=flex->Data.PhaseD.buf; break;
}
for (unsigned int i = 0; i < PHASE_WORDS; i++) {
int decode_error=bch3121_fix_errors(flex, &phaseptr[i], PhaseNo);
if (decode_error) {
verbprintf(3, "FLEX_NEXT: Garbled message at block %u\n", i);
// If the previous frame was a short message then we need to Null out the Group Message pointer
// this issue and sugested resolution was presented by 'bertinholland'
return;
}
/*Extract just the message bits*/
phaseptr[i]&=0x1FFFFFL;
}
// Block information word is the first data word in frame
uint32_t biw = phaseptr[0];
// Nothing to see here, please move along
if (biw == 0 || (biw & 0x1FFFFFL) == 0x1FFFFFL) {
verbprintf(3, "FLEX_NEXT: Nothing to see here, please move along\n");
return;
}
// Address start address is bits 9-8, plus one for offset (to account for biw)
unsigned int aoffset = ((biw >> 8) & 0x3L) + 1;
// Vector start index is bits 15-10
unsigned int voffset = (biw >> 10) & 0x3fL;
if (voffset < aoffset) {
verbprintf(3, "FLEX_NEXT: Invalid biw");
return;
}
// long addresses use double AW and VW, so there are anywhere between ceil(v-a/2) to v-a pages in this frame
verbprintf(3, "FLEX_NEXT: BlockInfoWord: (Phase %c) BIW:%08X AW %02u VW %02u (up to %u pages)\n", PhaseNo, biw, aoffset, voffset, voffset-aoffset);
int flex_groupmessage = 0;
int flex_groupbit = 0;
// Iterate through pages and dispatch to appropriate handler
for (unsigned int i = aoffset; i < voffset; i++) {
verbprintf(3, "FLEX_NEXT: Processing page offset #%u AW:%08X VW:%08X\n", i - aoffset + 1, phaseptr[i], phaseptr[voffset + i - aoffset]);
if (phaseptr[i] == 0 ||
(phaseptr[i] & 0x1FFFFFL) == 0x1FFFFFL) {
verbprintf(3, "FLEX_NEXT: Idle codewords, invalid address\n");
continue;
}
/*********************
* Parse AW
*/
uint32_t aiw = phaseptr[i];
flex->Decode.long_address = (aiw < 0x8001L) ||
(aiw > 0x1E0000L && aiw < 0x1F0001L) ||
(aiw > 0x1F7FFEL);
flex->Decode.capcode = aiw - 0x8000L; // if short address
if (flex->Decode.long_address) {
// Couldn't find spec on this, credit to PDW
flex->Decode.capcode = phaseptr[i + 1] ^ 0x1FFFFFL;
// 0x8000 or 32768 is 16b, use as upper part of 64b capcode
flex->Decode.capcode = flex->Decode.capcode << 15;
// add in 2068480 and first word, credit to PDW
// NOTE per PDW: this is not number given (2067456) in the patent for FLEX
flex->Decode.capcode += 2068480L + aiw;
}
if (flex->Decode.capcode > 4297068542LL || flex->Decode.capcode < 0) {
// Invalid address (by spec, maximum address)
verbprintf(3, "FLEX_NEXT: Invalid address, capcode out of range %" PRId64 "\n", flex->Decode.capcode);
continue;
}
verbprintf(3, "FLEX_NEXT: CAPCODE:%016" PRIx64 " %" PRId64 "\n", flex->Decode.capcode, flex->Decode.capcode);
flex_groupmessage = 0;
flex_groupbit = 0;
if ((flex->Decode.capcode >= 2029568) && (flex->Decode.capcode <= 2029583)) {
flex_groupmessage = 1;
flex_groupbit = flex->Decode.capcode - 2029568;
if(flex_groupbit < 0) continue;
}
if (flex_groupmessage && flex->Decode.long_address) {
// Invalid (by spec)
verbprintf(3, "FLEX_NEXT: Don't process group messages if a long address\n");
return;
}
verbprintf(3, "FLEX_NEXT: AIW %u: capcode:%" PRId64 " long:%d group:%d groupbit:%d\n", i, flex->Decode.capcode, flex->Decode.long_address, flex_groupmessage, flex_groupbit);
/*********************
* Parse VW
*/
// Parse vector information word for address @ offset 'i'
unsigned int j = voffset+i-aoffset; // Start of vector field for address @ i
uint32_t viw = phaseptr[j];
flex->Decode.type = ((viw >> 4) & 0x7L);
unsigned int mw1 = (viw >> 7) & 0x7FL;
unsigned int len = (viw >> 14) & 0x7FL;
unsigned int hdr;
if (flex->Decode.long_address) {
// the header is within the next VW
hdr = j + 1;
if (len >= 1) {
// per PDW
len--;
}
} else { // if short address
// the header is within the message
hdr = mw1;
mw1++;
if (!flex_groupmessage && len >= 1) {
// not in spec, possible decode issue, but this fixed repeatedly observed len issues
len--;
}
}
if (hdr >= PHASE_WORDS) {
verbprintf(3, "FLEX_NEXT: Invalid VIW\n");
continue;
}
// get message fragment number (bits 11 and 12) from first header word
// if frag != 3 then this is a continued message
int frag = (int) (phaseptr[hdr] >> 11) & 0x3L;
// which spec documents a cont flag? it is used to derive the K/F/C frag_flag
int cont = (int) (phaseptr[hdr] >> 10) & 0x1L;;
verbprintf(3, "FLEX_NEXT: VIW %u: type:%d mw1:%u len:%u frag:%i\n", j, flex->Decode.type, mw1, len, frag);
if (flex->Decode.type == FLEX_PAGETYPE_SHORT_INSTRUCTION)
{
// if (flex_groupmessage == 1) continue;
unsigned int iAssignedFrame = (int)((viw >> 10) & 0x7f); // Frame with groupmessage
int groupbit = (int)((viw >> 17) & 0x7f); // Listen to this groupcode
////////#############################################################################
////////#############################################################################
flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX]++;
int CapcodePlacement = flex->GroupHandler.GroupCodes[groupbit][CAPCODES_INDEX];
verbprintf(1, "FLEX_NEXT: Found Short Instruction, Group bit: %i capcodes in group so far %i, adding Capcode: [%010" PRId64 "]\n", groupbit, CapcodePlacement, flex->Decode.capcode);
flex->GroupHandler.GroupCodes[groupbit][CapcodePlacement] = flex->Decode.capcode;
flex->GroupHandler.GroupFrame[groupbit] = iAssignedFrame;
// Ok, so the cycle and frame can be used to make sure we haven't missed the message frame.
// but the cycle is 0 - 15 and the frame is 0 - 127
if(iAssignedFrame > flex->FIW.frameno)
{
flex->GroupHandler.GroupCycle[groupbit] = (int)flex->FIW.cycleno;
verbprintf(4, "FLEX_NEXT: Message frame is in this cycle: %i\n", flex->GroupHandler.GroupCycle[groupbit]);
}
else
{
if(flex->FIW.cycleno == 15)
{
flex->GroupHandler.GroupCycle[groupbit] = 0;
}
else
{
flex->GroupHandler.GroupCycle[groupbit] = (int)flex->FIW.cycleno++;
}
verbprintf(4, "FLEX_NEXT: Message frame is in the next cycle: %i\n", flex->GroupHandler.GroupCycle[groupbit]);
}
// Nothing else to do with this word.. move on!!
continue;
}
// mw1 == 0, or anything less than the offset after all the VIW, is bad
if (len < 1 || mw1 < (voffset + (voffset - aoffset)) || mw1 >= PHASE_WORDS) {
verbprintf(3, "FLEX_NEXT: Invalid VIW\n");
continue;
}
// mw1 + len == 89 was observed, but still contained valid page, so truncate
if ((mw1 + len) > PHASE_WORDS){
len = PHASE_WORDS - mw1;
}
if (is_tone_page(flex))
mw1 = len = 0;
verbprintf(0, "FLEX_NEXT|%i/%i|%02i.%03i.%c|%010" PRId64 "|%c%c|%1d|", flex->Sync.baud, flex->Sync.levels, flex->FIW.cycleno, flex->FIW.frameno, PhaseNo, flex->Decode.capcode, (flex->Decode.long_address ? 'L' : 'S'), (flex_groupmessage ? 'G' : 'S'), flex->Decode.type);
// Check if this is an alpha message
if (is_alphanumeric_page(flex)) {
verbprintf(0, "ALN|");
parse_alphanumeric(flex, phaseptr, mw1, len, frag, cont, flex_groupmessage, flex_groupbit);
}
else if (is_numeric_page(flex)) {
verbprintf(0, "NUM|");
parse_numeric(flex, phaseptr, j);
}
else if (is_tone_page(flex)) {
verbprintf(0, "TON|");
parse_tone_only(flex, phaseptr, j);
}
else if (is_binary_page(flex)) {
verbprintf(0, "BIN|");
parse_binary(flex, phaseptr, mw1, len);
}
else {
verbprintf(0, "UNK|");
parse_binary(flex, phaseptr, mw1, len);
}
verbprintf(0, "\n");
// long addresses eat 2 aw and 2 vw, so skip the next aw-vw pair
if (flex->Decode.long_address) {
i++;
}
}
}
static void clear_phase_data(struct Flex_Next * flex) {
if (flex==NULL) return;
int i;
for (i = 0; i < PHASE_WORDS; i++) {
flex->Data.PhaseA.buf[i]=0;
flex->Data.PhaseB.buf[i]=0;
flex->Data.PhaseC.buf[i]=0;
flex->Data.PhaseD.buf[i]=0;
}
flex->Data.PhaseA.idle_count=0;
flex->Data.PhaseB.idle_count=0;
flex->Data.PhaseC.idle_count=0;
flex->Data.PhaseD.idle_count=0;
flex->Data.phase_toggle=0;
flex->Data.data_bit_counter=0;
}
static void decode_data(struct Flex_Next * flex) {
if (flex==NULL) return;
if (flex->Sync.baud == 1600) {
if (flex->Sync.levels==2) {
decode_phase(flex, 'A');
} else {
decode_phase(flex, 'A');
decode_phase(flex, 'B');
}
} else {
if (flex->Sync.levels==2) {
decode_phase(flex, 'A');
decode_phase(flex, 'C');
} else {
decode_phase(flex, 'A');
decode_phase(flex, 'B');
decode_phase(flex, 'C');
decode_phase(flex, 'D');
}
}
}
static int read_data(struct Flex_Next * flex, unsigned char sym) {
if (flex==NULL) return -1;
// Here is where we output a 1 or 0 on each phase according
// to current FLEX mode and symbol value. Unassigned phases
// are zero from the enter_idle() initialization.
//
// FLEX can transmit the data portion of the frame at either
// 1600 bps or 3200 bps, and can use either two- or four-level
// FSK encoding.
//
// At 1600 bps, 2-level, a single "phase" is transmitted with bit
// value '0' using level '3' and bit value '1' using level '0'.
//
// At 1600 bps, 4-level, a second "phase" is transmitted, and the
// di-bits are encoded with a gray code:
//
// Symbol Phase 1 Phase 2
// ------ ------- -------
// 0 1 1
// 1 1 0
// 2 0 0
// 3 0 1
//
// At 1600 bps, 4-level, these are called PHASE A and PHASE B.
//
// At 3200 bps, the same 1 or 2 bit encoding occurs, except that
// additionally two streams are interleaved on alternating symbols.
// Thus, PHASE A (and PHASE B if 4-level) are decoded on one symbol,
// then PHASE C (and PHASE D if 4-level) are decoded on the next.
int bit_a=0; //Received data bit for Phase A
int bit_b=0; //Received data bit for Phase B
bit_a = (sym > 1);
if (flex->Sync.levels == 4) {
bit_b = (sym == 1) || (sym == 2);
}
if (flex->Sync.baud == 1600) {
flex->Data.phase_toggle=0;
}
//By making the index scan the data words in this way, the data is deinterlaced
//Bits 0, 1, and 2 map straight through to give a 0-7 sequence that repeats 32 times before moving to 8-15 repeating 32 times
unsigned int idx= ((flex->Data.data_bit_counter>>5)&0xFFF8) | (flex->Data.data_bit_counter&0x0007);
if (flex->Data.phase_toggle==0) {
flex->Data.PhaseA.buf[idx] = (flex->Data.PhaseA.buf[idx]>>1) | (bit_a?(0x80000000):0);
flex->Data.PhaseB.buf[idx] = (flex->Data.PhaseB.buf[idx]>>1) | (bit_b?(0x80000000):0);
flex->Data.phase_toggle=1;
if ((flex->Data.data_bit_counter & 0xFF) == 0xFF) {
if (flex->Data.PhaseA.buf[idx] == 0x00000000 || flex->Data.PhaseA.buf[idx] == 0xffffffff) flex->Data.PhaseA.idle_count++;
if (flex->Data.PhaseB.buf[idx] == 0x00000000 || flex->Data.PhaseB.buf[idx] == 0xffffffff) flex->Data.PhaseB.idle_count++;
}
} else {
flex->Data.PhaseC.buf[idx] = (flex->Data.PhaseC.buf[idx]>>1) | (bit_a?(0x80000000):0);
flex->Data.PhaseD.buf[idx] = (flex->Data.PhaseD.buf[idx]>>1) | (bit_b?(0x80000000):0);
flex->Data.phase_toggle=0;
if ((flex->Data.data_bit_counter & 0xFF) == 0xFF) {
if (flex->Data.PhaseC.buf[idx] == 0x00000000 || flex->Data.PhaseC.buf[idx] == 0xffffffff) flex->Data.PhaseC.idle_count++;
if (flex->Data.PhaseD.buf[idx] == 0x00000000 || flex->Data.PhaseD.buf[idx] == 0xffffffff) flex->Data.PhaseD.idle_count++;
}
}
if (flex->Sync.baud == 1600 || flex->Data.phase_toggle==0) {
flex->Data.data_bit_counter++;
}
/*Report if all active phases have gone idle*/
int idle=0;
if (flex->Sync.baud == 1600) {
if (flex->Sync.levels==2) {
idle=(flex->Data.PhaseA.idle_count>IDLE_THRESHOLD);
} else {
idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseB.idle_count>IDLE_THRESHOLD));
}
} else {
if (flex->Sync.levels==2) {
idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseC.idle_count>IDLE_THRESHOLD));
} else {
idle=((flex->Data.PhaseA.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseB.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseC.idle_count>IDLE_THRESHOLD) && (flex->Data.PhaseD.idle_count>IDLE_THRESHOLD));
}
}
return idle;
}
static void report_state(struct Flex_Next * flex) {
if (flex->State.Current != flex->State.Previous) {
flex->State.Previous = flex->State.Current;
char * state="Unknown";
switch (flex->State.Current) {
case FLEX_STATE_SYNC1:
state="SYNC1";
break;
case FLEX_STATE_FIW:
state="FIW";
break;
case FLEX_STATE_SYNC2:
state="SYNC2";
break;
case FLEX_STATE_DATA:
state="DATA";
break;
default:
break;
}
verbprintf(1, "FLEX_NEXT: State: %s\n", state);
}
}
//Called for each received symbol
static void flex_sym(struct Flex_Next * flex, unsigned char sym) {
if (flex==NULL) return;
/*If the signal has a negative polarity, the symbols must be inverted*/
/*Polarity is determined during the IDLE/sync word checking phase*/
unsigned char sym_rectified;
if (flex->Sync.polarity) {
sym_rectified=3-sym;
} else {
sym_rectified=sym;
}
switch (flex->State.Current) {
case FLEX_STATE_SYNC1:
{
// Continually compare the received symbol stream
// against the known FLEX sync words.
unsigned int sync_code=flex_sync(flex, sym); //Unrectified version of the symbol must be used here
if (sync_code!=0) {
decode_mode(flex,sync_code);
if (flex->Sync.baud!=0 && flex->Sync.levels!=0) {
flex->State.Current=FLEX_STATE_FIW;
verbprintf(2, "FLEX_NEXT: SyncInfoWord: sync_code=0x%04x baud=%i levels=%i polarity=%s zero=%f envelope=%f symrate=%f\n",
sync_code, flex->Sync.baud, flex->Sync.levels, flex->Sync.polarity?"NEG":"POS", flex->Modulation.zero, flex->Modulation.envelope, flex->Modulation.symbol_rate);
} else {
verbprintf(2, "FLEX_NEXT: Unknown Sync code = 0x%04x\n", sync_code);
flex->State.Current=FLEX_STATE_SYNC1;
}
} else {
flex->State.Current=FLEX_STATE_SYNC1;
}
flex->State.fiwcount=0;
flex->FIW.rawdata=0;
break;
}
case FLEX_STATE_FIW:
{
// Skip 16 bits of dotting, then accumulate 32 bits
// of Frame Information Word.
// FIW is accumulated, call BCH to error correct it
flex->State.fiwcount++;
if (flex->State.fiwcount>=16) {
read_2fsk(flex, sym_rectified, &flex->FIW.rawdata);
}
if (flex->State.fiwcount==48) {
if (decode_fiw(flex)==0) {
flex->State.sync2_count=0;
flex->Demodulator.baud = flex->Sync.baud;
flex->State.Current=FLEX_STATE_SYNC2;
} else {
flex->State.Current=FLEX_STATE_SYNC1;
}
}
break;
}
case FLEX_STATE_SYNC2:
{
// This part and the remainder of the frame are transmitted
// at either 1600 bps or 3200 bps based on the received
// FLEX sync word. The second SYNC header is 25ms of idle bits
// at either speed.
// Skip 25 ms = 40 bits @ 1600 bps, 80 @ 3200 bps
if (++flex->State.sync2_count == flex->Sync.baud*25/1000) {
flex->State.data_count=0;
clear_phase_data(flex);
flex->State.Current=FLEX_STATE_DATA;
}
break;
}
case FLEX_STATE_DATA:
{
// The data portion of the frame is 1760 ms long at either
// baudrate. This is 2816 bits @ 1600 bps and 5632 bits @ 3200 bps.
// The output_symbol() routine decodes and doles out the bits
// to each of the four transmitted phases of FLEX interleaved codes.
int idle=read_data(flex, sym_rectified);
if (++flex->State.data_count == flex->Sync.baud*1760/1000 || idle) {
decode_data(flex);
flex->Demodulator.baud = 1600;
flex->State.Current=FLEX_STATE_SYNC1;
flex->State.data_count=0;
}
break;
}
}
}
static int buildSymbol(struct Flex_Next * flex, double sample) {
if (flex == NULL) return 0;
const int64_t phase_max = 100 * flex->Demodulator.sample_freq; // Maximum value for phase (calculated to divide by sample frequency without remainder)
const int64_t phase_rate = phase_max*flex->Demodulator.baud / flex->Demodulator.sample_freq; // Increment per baseband sample
const double phasepercent = 100.0 * flex->Demodulator.phase / phase_max;
/*Update the sample counter*/
flex->Demodulator.sample_count++;
/*Remove DC offset (FIR filter)*/
if (flex->State.Current == FLEX_STATE_SYNC1) {
flex->Modulation.zero = (flex->Modulation.zero*(FREQ_SAMP*DC_OFFSET_FILTER) + sample) / ((FREQ_SAMP*DC_OFFSET_FILTER) + 1);
}
sample -= flex->Modulation.zero;
if (flex->Demodulator.locked) {
/*During the synchronisation period, establish the envelope of the signal*/
if (flex->State.Current == FLEX_STATE_SYNC1) {
flex->Demodulator.envelope_sum += fabs(sample);
flex->Demodulator.envelope_count++;
flex->Modulation.envelope = flex->Demodulator.envelope_sum / flex->Demodulator.envelope_count;
}
}
else {
/*Reset and hold in initial state*/
flex->Modulation.envelope = 0;
flex->Demodulator.envelope_sum = 0;
flex->Demodulator.envelope_count = 0;
flex->Demodulator.baud = 1600;
flex->Demodulator.timeout = 0;
flex->Demodulator.nonconsec = 0;
flex->State.Current = FLEX_STATE_SYNC1;
}
/* MID 80% SYMBOL PERIOD */
if (phasepercent > 10 && phasepercent <90) {
/*Count the number of occurrences of each symbol value for analysis at end of symbol period*/
if (sample > 0) {
if (sample > flex->Modulation.envelope*SLICE_THRESHOLD)
flex->Demodulator.symcount[3]++;
else
flex->Demodulator.symcount[2]++;
}
else {
if (sample < -flex->Modulation.envelope*SLICE_THRESHOLD)
flex->Demodulator.symcount[0]++;
else
flex->Demodulator.symcount[1]++;
}
}
/* ZERO CROSSING */
if ((flex->Demodulator.sample_last<0 && sample >= 0) || (flex->Demodulator.sample_last >= 0 && sample<0)) {
/*The phase error has a direction towards the closest symbol boundary*/
double phase_error = 0.0;
if (phasepercent<50) {
phase_error = flex->Demodulator.phase;
}
else {
phase_error = flex->Demodulator.phase - phase_max;
}
/*Phase lock with the signal*/
if (flex->Demodulator.locked) {
flex->Demodulator.phase -= phase_error * PHASE_LOCKED_RATE;
}
else {
flex->Demodulator.phase -= phase_error * PHASE_UNLOCKED_RATE;
}
/*If too many zero crossing occur within the mid 80% then indicate lock has been lost*/
if (phasepercent > 10 && phasepercent < 90) {
flex->Demodulator.nonconsec++;
if (flex->Demodulator.nonconsec>20 && flex->Demodulator.locked) {
verbprintf(1, "FLEX_NEXT: Synchronisation Lost\n");
flex->Demodulator.locked = 0;
}
}
else {
flex->Demodulator.nonconsec = 0;
}
flex->Demodulator.timeout = 0;
}
flex->Demodulator.sample_last = sample;
/* END OF SYMBOL PERIOD */
flex->Demodulator.phase += phase_rate;
if (flex->Demodulator.phase > phase_max) {
flex->Demodulator.phase -= phase_max;
return 1;
} else {
return 0;
}
}
static void Flex_Demodulate(struct Flex_Next * flex, double sample) {
if(flex == NULL) return;
if (buildSymbol(flex, sample) == 1) {
flex->Demodulator.nonconsec = 0;
flex->Demodulator.symbol_count++;
flex->Modulation.symbol_rate = 1.0 * flex->Demodulator.symbol_count*flex->Demodulator.sample_freq / flex->Demodulator.sample_count;
/*Determine the modal symbol*/
int j;
int decmax = 0;
int modal_symbol = 0;
for (j = 0; j<4; j++) {
if (flex->Demodulator.symcount[j] > decmax) {
modal_symbol = j;
decmax = flex->Demodulator.symcount[j];
}
}
flex->Demodulator.symcount[0] = 0;
flex->Demodulator.symcount[1] = 0;
flex->Demodulator.symcount[2] = 0;
flex->Demodulator.symcount[3] = 0;
if (flex->Demodulator.locked) {
/*Process the symbol*/
flex_sym(flex, modal_symbol);
}
else {
/*Check for lock pattern*/
/*Shift symbols into buffer, symbols are converted so that the max and min symbols map to 1 and 2 i.e each contain a single 1 */
flex->Demodulator.lock_buf = (flex->Demodulator.lock_buf << 2) | (modal_symbol ^ 0x1);
uint64_t lock_pattern = flex->Demodulator.lock_buf ^ 0x6666666666666666ull;
uint64_t lock_mask = (1ull << (2 * LOCK_LEN)) - 1;
if ((lock_pattern&lock_mask) == 0 || ((~lock_pattern)&lock_mask) == 0) {
verbprintf(1, "FLEX_NEXT: Locked\n");
flex->Demodulator.locked = 1;
/*Clear the syncronisation buffer*/
flex->Demodulator.lock_buf = 0;
flex->Demodulator.symbol_count = 0;
flex->Demodulator.sample_count = 0;
}
}
/*Time out after X periods with no zero crossing*/
flex->Demodulator.timeout++;
if (flex->Demodulator.timeout>DEMOD_TIMEOUT) {
verbprintf(1, "FLEX_NEXT: Timeout\n");
flex->Demodulator.locked = 0;
}
}
report_state(flex);
}
static void Flex_Delete(struct Flex_Next * flex) {
if (flex==NULL) return;
if (flex->Decode.BCHCode!=NULL) {
BCHCode_Delete(flex->Decode.BCHCode);
flex->Decode.BCHCode=NULL;
}
free(flex);
}
static struct Flex_Next * Flex_New(unsigned int SampleFrequency) {
struct Flex_Next *flex=(struct Flex_Next *)malloc(sizeof(struct Flex_Next));
if (flex!=NULL) {
memset(flex, 0, sizeof(struct Flex_Next));
flex->Demodulator.sample_freq=SampleFrequency;
// The baud rate of first syncword and FIW is always 1600, so set that
// rate to start.
flex->Demodulator.baud = 1600;
/*Generator polynomial for BCH3121 Code*/
int p[6];
p[0] = p[2] = p[5] = 1; p[1] = p[3] = p[4] =0;
flex->Decode.BCHCode=BCHCode_New( p, 5, 31, 21, 2);
if (flex->Decode.BCHCode == NULL) {
Flex_Delete(flex);
flex=NULL;
}
for(int g = 0; g < GROUP_BITS; g++)
{
flex->GroupHandler.GroupFrame[g] = -1;
flex->GroupHandler.GroupCycle[g] = -1;
}
}
return flex;
}
static void flex_next_demod(struct demod_state *s, buffer_t buffer, int length) {
if (s==NULL) return;
if (s->l1.flex_next==NULL) return;
int i;
for (i=0; i<length; i++) {
Flex_Demodulate(s->l1.flex_next, buffer.fbuffer[i]);
}
}
static void flex_next_init(struct demod_state *s) {
if (s==NULL) return;
s->l1.flex_next=Flex_New(FREQ_SAMP);
}
static void flex_next_deinit(struct demod_state *s) {
if (s==NULL) return;
if (s->l1.flex_next==NULL) return;
Flex_Delete(s->l1.flex_next);
s->l1.flex_next=NULL;
}
const struct demod_param demod_flex_next = {
"FLEX_NEXT", true, FREQ_SAMP, FILTLEN, flex_next_init, flex_next_demod, flex_next_deinit
};
|