1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
|
/* Extended regular expression matching and search library,
version 0.12.
(Implements POSIX draft P10003.2/D11.2, except for
internationalization features.)
Copyright (C) 1993 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#define _GNU_SOURCE
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#ifndef bcmp
#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
#endif
#ifndef bcopy
#define bcopy(s, d, n) memcpy ((d), (s), (n))
#endif
#ifndef bzero
#define bzero(s, n) memset ((s), 0, (n))
#endif
/* Define the syntax stuff for \<, \>, etc. */
#ifndef Sword
#define Sword 1
#endif
#define CHAR_SET_SIZE 256
static char re_syntax_table[CHAR_SET_SIZE];
static void init_syntax_once(void)
{
register int c;
static int done = 0;
if (done)
return;
bzero(re_syntax_table, sizeof re_syntax_table);
for (c = 'a'; c <= 'z'; c++)
re_syntax_table[c] = Sword;
for (c = 'A'; c <= 'Z'; c++)
re_syntax_table[c] = Sword;
for (c = '0'; c <= '9'; c++)
re_syntax_table[c] = Sword;
re_syntax_table['_'] = Sword;
done = 1;
}
#define SYNTAX(c) re_syntax_table[c]
#include "regex.h"
#include <ctype.h>
#ifdef isblank
#define ISBLANK(c) (isascii (c) && isblank (c))
#else
#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
#endif
#ifdef isgraph
#define ISGRAPH(c) (isascii (c) && isgraph (c))
#else
#define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
#endif
#define ISPRINT(c) (isascii (c) && isprint (c))
#define ISDIGIT(c) (isascii (c) && isdigit (c))
#define ISALNUM(c) (isascii (c) && isalnum (c))
#define ISALPHA(c) (isascii (c) && isalpha (c))
#define ISCNTRL(c) (isascii (c) && iscntrl (c))
#define ISLOWER(c) (isascii (c) && islower (c))
#define ISPUNCT(c) (isascii (c) && ispunct (c))
#define ISSPACE(c) (isascii (c) && isspace (c))
#define ISUPPER(c) (isascii (c) && isupper (c))
#define ISXDIGIT(c) (isascii (c) && isxdigit (c))
#undef SIGN_EXTEND_CHAR
#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
#ifndef alloca
#ifdef __GNUC__
#define alloca __builtin_alloca
#endif /* not __GNUC__ */
#endif /* not alloca */
#define REGEX_ALLOCATE alloca
/* Assumes a `char *destination' variable. */
#define REGEX_REALLOCATE(source, osize, nsize) \
(destination = (char *) alloca (nsize), \
bcopy (source, destination, osize), \
destination)
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
`string1' or just past its end. This works if PTR is NULL, which is
a good thing. */
#define FIRST_STRING_P(ptr) \
(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
/* (Re)Allocate N items of type T using malloc, or fail. */
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
#define BYTEWIDTH 8 /* In bits. */
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
typedef char boolean;
#define false 0
#define true 1
typedef enum {
no_op = 0,
exactn = 1,
anychar,
charset,
charset_not,
start_memory,
stop_memory,
duplicate,
begline,
endline,
begbuf,
endbuf,
jump,
jump_past_alt,
on_failure_jump,
on_failure_keep_string_jump,
pop_failure_jump,
maybe_pop_jump,
dummy_failure_jump,
push_dummy_failure,
succeed_n,
jump_n,
set_number_at,
wordchar,
notwordchar,
wordbeg,
wordend,
wordbound,
notwordbound
} re_opcode_t;
#define STORE_NUMBER(destination, number) \
do { \
(destination)[0] = (number) & 0377; \
(destination)[1] = (number) >> 8; \
} while (0)
#define STORE_NUMBER_AND_INCR(destination, number) \
do { \
STORE_NUMBER (destination, number); \
(destination) += 2; \
} while (0)
#define EXTRACT_NUMBER(destination, source) \
do { \
(destination) = *(source) & 0377; \
(destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
} while (0)
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
do { \
EXTRACT_NUMBER (destination, source); \
(source) += 2; \
} while (0)
#undef assert
#define assert(e)
#define DEBUG_STATEMENT(e)
#define DEBUG_PRINT1(x)
#define DEBUG_PRINT2(x1, x2)
#define DEBUG_PRINT3(x1, x2, x3)
#define DEBUG_PRINT4(x1, x2, x3, x4)
#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
reg_syntax_t re_set_syntax(syntax)
reg_syntax_t syntax;
{
reg_syntax_t ret = re_syntax_options;
re_syntax_options = syntax;
return ret;
}
/* This table gives an error message for each of the error codes listed
in regex.h. Obviously the order here has to be same as there. */
static const char *re_error_msg[] = { NULL, /* REG_NOERROR */
"No match", /* REG_NOMATCH */
"Invalid regular expression", /* REG_BADPAT */
"Invalid collation character", /* REG_ECOLLATE */
"Invalid character class name", /* REG_ECTYPE */
"Trailing backslash", /* REG_EESCAPE */
"Invalid back reference", /* REG_ESUBREG */
"Unmatched [ or [^", /* REG_EBRACK */
"Unmatched ( or \\(", /* REG_EPAREN */
"Unmatched \\{", /* REG_EBRACE */
"Invalid content of \\{\\}", /* REG_BADBR */
"Invalid range end", /* REG_ERANGE */
"Memory exhausted", /* REG_ESPACE */
"Invalid preceding regular expression", /* REG_BADRPT */
"Premature end of regular expression", /* REG_EEND */
"Regular expression too big", /* REG_ESIZE */
"Unmatched ) or \\)", /* REG_ERPAREN */
};
/* Subroutine declarations and macros for regex_compile. */
static reg_errcode_t regex_compile (const char *pattern, size_t size,
reg_syntax_t syntax,
struct re_pattern_buffer * bufp);
static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
static void insert_op1 (re_opcode_t op, unsigned char *loc, int arg,
unsigned char *end);
static void insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2,
unsigned char *end);
static boolean at_begline_loc_p (const char *pattern, const char *p,
reg_syntax_t syntax);
static boolean at_endline_loc_p (const char *p, const char *pend,
reg_syntax_t syntax);
static reg_errcode_t compile_range (const char **p_ptr, const char *pend,
char *translate, reg_syntax_t syntax,
unsigned char *b);
/* Fetch the next character in the uncompiled pattern---translating it
if necessary. Also cast from a signed character in the constant
string passed to us by the user to an unsigned char that we can use
as an array index (in, e.g., `translate'). */
#define PATFETCH(c) \
do {if (p == pend) return REG_EEND; \
c = (unsigned char) *p++; \
if (translate) c = translate[c]; \
} while (0)
/* Fetch the next character in the uncompiled pattern, with no
translation. */
#define PATFETCH_RAW(c) \
do {if (p == pend) return REG_EEND; \
c = (unsigned char) *p++; \
} while (0)
/* Go backwards one character in the pattern. */
#define PATUNFETCH p--
/* If `translate' is non-null, return translate[D], else just D. We
cast the subscript to translate because some data is declared as
`char *', to avoid warnings when a string constant is passed. But
when we use a character as a subscript we must make it unsigned. */
#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
/* Macros for outputting the compiled pattern into `buffer'. */
/* If the buffer isn't allocated when it comes in, use this. */
#define INIT_BUF_SIZE 32
/* Make sure we have at least N more bytes of space in buffer. */
#define GET_BUFFER_SPACE(n) \
while (b - bufp->buffer + (n) > bufp->allocated) \
EXTEND_BUFFER ()
/* Make sure we have one more byte of buffer space and then add C to it. */
#define BUF_PUSH(c) \
do { \
GET_BUFFER_SPACE (1); \
*b++ = (unsigned char) (c); \
} while (0)
/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
#define BUF_PUSH_2(c1, c2) \
do { \
GET_BUFFER_SPACE (2); \
*b++ = (unsigned char) (c1); \
*b++ = (unsigned char) (c2); \
} while (0)
/* As with BUF_PUSH_2, except for three bytes. */
#define BUF_PUSH_3(c1, c2, c3) \
do { \
GET_BUFFER_SPACE (3); \
*b++ = (unsigned char) (c1); \
*b++ = (unsigned char) (c2); \
*b++ = (unsigned char) (c3); \
} while (0)
/* Store a jump with opcode OP at LOC to location TO. We store a
relative address offset by the three bytes the jump itself occupies. */
#define STORE_JUMP(op, loc, to) \
store_op1 (op, loc, (int)((to) - (loc) - 3))
/* Likewise, for a two-argument jump. */
#define STORE_JUMP2(op, loc, to, arg) \
store_op2 (op, loc, (int)((to) - (loc) - 3), arg)
/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
#define INSERT_JUMP(op, loc, to) \
insert_op1 (op, loc, (int)((to) - (loc) - 3), b)
/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
#define INSERT_JUMP2(op, loc, to, arg) \
insert_op2 (op, loc, (int)((to) - (loc) - 3), arg, b)
/* This is not an arbitrary limit: the arguments which represent offsets
into the pattern are two bytes long. So if 2^16 bytes turns out to
be too small, many things would have to change. */
#define MAX_BUF_SIZE (1L << 16)
#define REALLOC realloc
/* Extend the buffer by twice its current size via realloc and
reset the pointers that pointed into the old block to point to the
correct places in the new one. If extending the buffer results in it
being larger than MAX_BUF_SIZE, then flag memory exhausted. */
#define EXTEND_BUFFER() \
do { \
unsigned char *old_buffer = bufp->buffer; \
if (bufp->allocated == MAX_BUF_SIZE) \
return REG_ESIZE; \
bufp->allocated <<= 1; \
if (bufp->allocated > MAX_BUF_SIZE) \
bufp->allocated = MAX_BUF_SIZE; \
bufp->buffer = (unsigned char *) REALLOC(bufp->buffer, bufp->allocated);\
if (bufp->buffer == NULL) \
return REG_ESPACE; \
/* If the buffer moved, move all the pointers into it. */ \
if (old_buffer != bufp->buffer) \
{ \
b = (b - old_buffer) + bufp->buffer; \
begalt = (begalt - old_buffer) + bufp->buffer; \
if (fixup_alt_jump) \
fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
if (laststart) \
laststart = (laststart - old_buffer) + bufp->buffer; \
if (pending_exact) \
pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
} \
} while (0)
/* Since we have one byte reserved for the register number argument to
{start,stop}_memory, the maximum number of groups we can report
things about is what fits in that byte. */
#define MAX_REGNUM 255
/* But patterns can have more than `MAX_REGNUM' registers. We just
ignore the excess. */
typedef unsigned regnum_t;
/* Macros for the compile stack. */
/* Since offsets can go either forwards or backwards, this type needs to
be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
/* int may be not enough when sizeof(int) == 2 */
typedef long pattern_offset_t;
typedef struct {
pattern_offset_t begalt_offset;
pattern_offset_t fixup_alt_jump;
pattern_offset_t inner_group_offset;
pattern_offset_t laststart_offset;
regnum_t regnum;
} compile_stack_elt_t;
typedef struct {
compile_stack_elt_t *stack;
unsigned size;
unsigned avail; /* Offset of next open position. */
} compile_stack_type;
#define INIT_COMPILE_STACK_SIZE 32
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
/* The next available element. */
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
/* Set the bit for character C in a list. */
#define SET_LIST_BIT(c) \
(b[((unsigned char) (c)) / BYTEWIDTH] \
|= 1 << (((unsigned char) c) % BYTEWIDTH))
/* Get the next unsigned number in the uncompiled pattern. */
#define GET_UNSIGNED_NUMBER(num) \
{ if (p != pend) \
{ \
PATFETCH (c); \
while (ISDIGIT (c)) \
{ \
if (num < 0) \
num = 0; \
num = num * 10 + c - '0'; \
if (p == pend) \
break; \
PATFETCH (c); \
} \
} \
}
#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
#define IS_CHAR_CLASS(string) \
(STREQ (string, "alpha") || STREQ (string, "upper") \
|| STREQ (string, "lower") || STREQ (string, "digit") \
|| STREQ (string, "alnum") || STREQ (string, "xdigit") \
|| STREQ (string, "space") || STREQ (string, "print") \
|| STREQ (string, "punct") || STREQ (string, "graph") \
|| STREQ (string, "cntrl") || STREQ (string, "blank"))
static boolean group_in_compile_stack (compile_stack_type
compile_stack, regnum_t regnum);
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
Returns one of error codes defined in `regex.h', or zero for success */
static reg_errcode_t regex_compile(pattern, size, syntax, bufp)
const char *pattern;
size_t size;
reg_syntax_t syntax;
struct re_pattern_buffer *bufp;
{
/* We fetch characters from PATTERN here. Even though PATTERN is
`char *' (i.e., signed), we declare these variables as unsigned, so
they can be reliably used as array indices. */
register unsigned char c, c1;
/* A random tempory spot in PATTERN. */
const char *p1;
/* Points to the end of the buffer, where we should append. */
register unsigned char *b;
/* Keeps track of unclosed groups. */
compile_stack_type compile_stack;
/* Points to the current (ending) position in the pattern. */
const char *p = pattern;
const char *pend = pattern + size;
/* How to translate the characters in the pattern. */
char *translate = bufp->translate;
/* Address of the count-byte of the most recently inserted `exactn'
command. This makes it possible to tell if a new exact-match
character can be added to that command or if the character requires
a new `exactn' command. */
unsigned char *pending_exact = 0;
/* Address of start of the most recently finished expression.
This tells, e.g., postfix * where to find the start of its
operand. Reset at the beginning of groups and alternatives. */
unsigned char *laststart = 0;
/* Address of beginning of regexp, or inside of last group. */
unsigned char *begalt;
/* Place in the uncompiled pattern (i.e., the {) to
which to go back if the interval is invalid. */
const char *beg_interval;
/* Address of the place where a forward jump should go to the end of
the containing expression. Each alternative of an `or' -- except the
last -- ends with a forward jump of this sort. */
unsigned char *fixup_alt_jump = 0;
/* Counts open-groups as they are encountered. Remembered for the
matching close-group on the compile stack, so the same register
number is put in the stop_memory as the start_memory. */
regnum_t regnum = 0;
/* Initialize the compile stack. */
compile_stack.stack =
TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
if (compile_stack.stack == NULL)
return REG_ESPACE;
compile_stack.size = INIT_COMPILE_STACK_SIZE;
compile_stack.avail = 0;
/* Initialize the pattern buffer. */
bufp->syntax = syntax;
bufp->fastmap_accurate = 0;
bufp->not_bol = bufp->not_eol = 0;
/* Set `used' to zero, so that if we return an error, the pattern
printer (for debugging) will think there's no pattern. We reset it
at the end. */
bufp->used = 0;
/* Always count groups, whether or not bufp->no_sub is set. */
bufp->re_nsub = 0;
/* Initialize the syntax table. */
init_syntax_once();
if (bufp->allocated == 0) {
if (bufp->buffer) {
RETALLOC(bufp->buffer, INIT_BUF_SIZE,
unsigned char);
} else { /* Caller did not allocate a buffer. Do it for them. */
bufp->buffer =
TALLOC(INIT_BUF_SIZE, unsigned char);
}
if (!bufp->buffer)
return REG_ESPACE;
bufp->allocated = INIT_BUF_SIZE;
}
begalt = b = bufp->buffer;
/* Loop through the uncompiled pattern until we're at the end. */
while (p != pend) {
PATFETCH(c);
switch (c) {
case '^':
{
if (p == pattern + 1 ||
syntax & RE_CONTEXT_INDEP_ANCHORS ||
at_begline_loc_p(pattern, p, syntax))
BUF_PUSH(begline);
else
goto normal_char;
}
break;
case '$':
{
if (p == pend ||
syntax & RE_CONTEXT_INDEP_ANCHORS ||
at_endline_loc_p(p, pend, syntax))
BUF_PUSH(endline);
else
goto normal_char;
}
break;
case '+':
case '?':
if ((syntax & RE_BK_PLUS_QM) ||
(syntax & RE_LIMITED_OPS))
goto normal_char;
handle_plus:
case '*':
/* If there is no previous pattern... */
if (!laststart) {
if (syntax & RE_CONTEXT_INVALID_OPS)
return REG_BADRPT;
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
goto normal_char;
}
{
/* Are we optimizing this jump? */
boolean keep_string_p = false;
/* 1 means zero (many) matches is allowed. */
char zero_times_ok = 0, many_times_ok = 0;
for (;;) {
zero_times_ok |= c != '+';
many_times_ok |= c != '?';
if (p == pend)
break;
PATFETCH(c);
if (c == '*' || (!(syntax & RE_BK_PLUS_QM) &&
(c == '+' || c == '?')));
else if (syntax & RE_BK_PLUS_QM && c == '\\') {
if (p == pend)
return REG_EESCAPE;
PATFETCH(c1);
if (!(c1 == '+' || c1 == '?')) {
PATUNFETCH;
PATUNFETCH;
break;
}
c = c1;
} else {
PATUNFETCH;
break;
}
}
if (!laststart)
break;
if (many_times_ok) {
assert(p - 1 > pattern);
/* Allocate the space for the jump. */
GET_BUFFER_SPACE(3);
if (TRANSLATE(*(p - 2)) == TRANSLATE('.') &&
zero_times_ok && p < pend &&
TRANSLATE(*p) == TRANSLATE('\n') &&
!(syntax & RE_DOT_NEWLINE)) {
/* We have .*\n. */
STORE_JUMP(jump, b, laststart);
keep_string_p = true;
} else
STORE_JUMP(maybe_pop_jump, b,
laststart - 3);
b += 3;
}
GET_BUFFER_SPACE(3);
INSERT_JUMP(keep_string_p ?
on_failure_keep_string_jump :
on_failure_jump, laststart,
b + 3);
pending_exact = 0;
b += 3;
if (!zero_times_ok) {
GET_BUFFER_SPACE(3);
INSERT_JUMP(dummy_failure_jump,
laststart,
laststart + 6);
b += 3;
}
}
break;
case '.':
laststart = b;
BUF_PUSH(anychar);
break;
case '[':
{
boolean had_char_class = false;
if (p == pend)
return REG_EBRACK;
GET_BUFFER_SPACE(34);
laststart = b;
/* We test `*p == '^' twice, instead of using an if
statement, so we only need one BUF_PUSH. */
BUF_PUSH(*p == '^' ? charset_not : charset);
if (*p == '^')
p++;
p1 = p;
/* Push the number of bytes in the bitmap. */
BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
/* Clear the whole map. */
bzero(b, (1 << BYTEWIDTH) / BYTEWIDTH);
if ((re_opcode_t) b[-2] == charset_not
&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
SET_LIST_BIT('\n');
/* Read in characters and ranges, setting map bits. */
for (;;) {
if (p == pend)
return REG_EBRACK;
PATFETCH(c);
if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) &&
c == '\\') {
if (p == pend)
return REG_EESCAPE;
PATFETCH(c1);
SET_LIST_BIT(c1);
continue;
}
if (c == ']' && p != p1 + 1)
break;
if (had_char_class && c == '-' && *p != ']')
return REG_ERANGE;
if (c == '-' && !(p - 2 >= pattern &&
p[-2] == '[') && !(p - 3 >= pattern &&
p[-3] == '[' && p[-2] == '^') &&
*p != ']') {
reg_errcode_t ret =
compile_range(&p, pend, translate,
syntax, b);
if (ret != REG_NOERROR)
return ret;
}
else if (p[0] == '-' && p[1] != ']') {
reg_errcode_t ret;
/* Move past the `-'. */
PATFETCH(c1);
ret = compile_range(&p, pend, translate,
syntax, b);
if (ret != REG_NOERROR)
return ret;
}
else if (syntax & RE_CHAR_CLASSES &&
c == '[' && *p == ':') {
char str[CHAR_CLASS_MAX_LENGTH + 1];
PATFETCH(c);
c1 = 0;
/* If pattern is `[[:'. */
if (p == pend)
return REG_EBRACK;
for (;;) {
PATFETCH(c);
if (c == ':' || c == ']' ||
p == pend || c1 ==
CHAR_CLASS_MAX_LENGTH)
break;
str[c1++] = c;
}
str[c1] = '\0';
if (c == ':' && *p == ']') {
int ch;
boolean is_alnum =
STREQ(str, "alnum");
boolean is_alpha =
STREQ(str, "alpha");
boolean is_blank =
STREQ(str, "blank");
boolean is_cntrl =
STREQ(str, "cntrl");
boolean is_digit =
STREQ(str, "digit");
boolean is_graph =
STREQ(str, "graph");
boolean is_lower =
STREQ(str, "lower");
boolean is_print =
STREQ(str, "print");
boolean is_punct =
STREQ(str, "punct");
boolean is_space =
STREQ(str, "space");
boolean is_upper =
STREQ(str, "upper");
boolean is_xdigit =
STREQ(str, "xdigit");
if (!IS_CHAR_CLASS(str))
return REG_ECTYPE;
PATFETCH(c);
if (p == pend)
return REG_EBRACK;
for (ch = 0; ch < 1 <<
BYTEWIDTH; ch++) {
if ((is_alnum &&
ISALNUM(ch)) ||
(is_alpha &&
ISALPHA(ch)) ||
(is_blank &&
ISBLANK(ch)) ||
(is_cntrl &&
ISCNTRL(ch)) ||
(is_digit &&
ISDIGIT(ch)) ||
(is_graph &&
ISGRAPH(ch)) ||
(is_lower &&
ISLOWER(ch)) ||
(is_print &&
ISPRINT(ch)) ||
(is_punct &&
ISPUNCT(ch)) ||
(is_space &&
ISSPACE(ch)) ||
(is_upper &&
ISUPPER(ch)) ||
(is_xdigit &&
ISXDIGIT(ch)))
SET_LIST_BIT(ch);
}
had_char_class =
true;
} else {
c1++;
while (c1--)
PATUNFETCH;
SET_LIST_BIT('[');
SET_LIST_BIT(':');
had_char_class = false;
}
} else {
had_char_class = false;
SET_LIST_BIT(c);
}
}
while ((int) b[-1] > 0
&& b[b[-1] - 1] == 0)
b[-1]--;
b += b[-1];
}
break;
case '(':
if (syntax & RE_NO_BK_PARENS)
goto handle_open;
else
goto normal_char;
case ')':
if (syntax & RE_NO_BK_PARENS)
goto handle_close;
else
goto normal_char;
case '\n':
if (syntax & RE_NEWLINE_ALT)
goto handle_alt;
else
goto normal_char;
case '|':
if (syntax & RE_NO_BK_VBAR)
goto handle_alt;
else
goto normal_char;
case '{':
if (syntax & RE_INTERVALS
&& syntax & RE_NO_BK_BRACES)
goto handle_interval;
else
goto normal_char;
case '\\':
if (p == pend)
return REG_EESCAPE;
PATFETCH_RAW(c);
switch (c) {
case '(':
if (syntax & RE_NO_BK_PARENS)
goto normal_backslash;
handle_open:
bufp->re_nsub++;
regnum++;
if (COMPILE_STACK_FULL) {
RETALLOC(compile_stack.stack,
compile_stack.size << 1,
compile_stack_elt_t);
if (compile_stack.stack == NULL)
return REG_ESPACE;
compile_stack.size <<= 1;
}
COMPILE_STACK_TOP.begalt_offset =
begalt - bufp->buffer;
COMPILE_STACK_TOP.fixup_alt_jump =
fixup_alt_jump ? fixup_alt_jump -
bufp->buffer + 1 : 0;
COMPILE_STACK_TOP.laststart_offset =
b - bufp->buffer;
COMPILE_STACK_TOP.regnum = regnum;
if (regnum <= MAX_REGNUM) {
COMPILE_STACK_TOP.inner_group_offset =
b - bufp->buffer + 2;
BUF_PUSH_3(start_memory, regnum, 0);
}
compile_stack.avail++;
fixup_alt_jump = 0;
laststart = 0;
begalt = b;
pending_exact = 0;
break;
case ')':
if (syntax & RE_NO_BK_PARENS)
goto normal_backslash;
if (COMPILE_STACK_EMPTY) {
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
goto normal_backslash;
else
return REG_ERPAREN;
}
handle_close:
if (fixup_alt_jump) {
BUF_PUSH(push_dummy_failure);
STORE_JUMP(jump_past_alt,
fixup_alt_jump, b - 1);
}
if (COMPILE_STACK_EMPTY) {
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
goto normal_char;
else
return REG_ERPAREN;
}
assert(compile_stack.avail != 0);
{
regnum_t this_group_regnum;
compile_stack.avail--;
begalt = bufp->buffer +
COMPILE_STACK_TOP.begalt_offset;
fixup_alt_jump =
COMPILE_STACK_TOP.fixup_alt_jump ?
bufp->buffer + COMPILE_STACK_TOP.
fixup_alt_jump - 1 : 0;
laststart = bufp->buffer +
COMPILE_STACK_TOP.laststart_offset;
this_group_regnum = COMPILE_STACK_TOP.regnum;
pending_exact = 0;
if (this_group_regnum <= MAX_REGNUM) {
unsigned char
*inner_group_loc = bufp->buffer +
COMPILE_STACK_TOP.
inner_group_offset;
*inner_group_loc = regnum -
this_group_regnum;
BUF_PUSH_3(stop_memory,
this_group_regnum,
regnum - this_group_regnum);
}
}
break;
case '|': /* `\|'. */
if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
goto normal_backslash;
handle_alt:
if (syntax & RE_LIMITED_OPS)
goto normal_char;
GET_BUFFER_SPACE(3);
INSERT_JUMP(on_failure_jump, begalt, b + 6);
pending_exact = 0;
b += 3;
if (fixup_alt_jump)
STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
fixup_alt_jump = b;
GET_BUFFER_SPACE(3);
b += 3;
laststart = 0;
begalt = b;
break;
case '{':
/* If \{ is a literal. */
if (!(syntax & RE_INTERVALS) || ((syntax & RE_INTERVALS)
&& (syntax & RE_NO_BK_BRACES))
|| (p - 2 == pattern && p == pend))
goto normal_backslash;
handle_interval:
{
int lower_bound = -1, upper_bound = -1;
beg_interval = p - 1;
if (p == pend) {
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_EBRACE;
}
GET_UNSIGNED_NUMBER(lower_bound);
if (c == ',') {
GET_UNSIGNED_NUMBER(upper_bound);
if (upper_bound < 0)
upper_bound = RE_DUP_MAX;
} else
upper_bound = lower_bound;
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|| lower_bound > upper_bound) {
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_BADBR;
}
if (!(syntax & RE_NO_BK_BRACES)) {
if (c != '\\')
return REG_EBRACE;
PATFETCH(c);
}
if (c != '}') {
if (syntax & RE_NO_BK_BRACES)
goto unfetch_interval;
else
return REG_BADBR;
}
if (!laststart) {
if (syntax & RE_CONTEXT_INVALID_OPS)
return REG_BADRPT;
else if (syntax & RE_CONTEXT_INDEP_OPS)
laststart = b;
else
goto unfetch_interval;
}
if (upper_bound == 0) {
GET_BUFFER_SPACE(3);
INSERT_JUMP(jump, laststart, b + 3);
b += 3;
}
else {
unsigned nbytes =
10 + (upper_bound > 1) * 10;
GET_BUFFER_SPACE(nbytes);
INSERT_JUMP2(succeed_n, laststart,
b + 5 + (upper_bound >
1) * 5, lower_bound);
b += 5;
insert_op2(set_number_at, laststart, 5,
lower_bound, b);
b += 5;
if (upper_bound > 1) {
STORE_JUMP2(jump_n, b,
laststart + 5,
upper_bound - 1);
b += 5;
insert_op2(set_number_at,
laststart,
b - laststart,
upper_bound - 1, b);
b += 5;
}
}
pending_exact = 0;
beg_interval = NULL;
}
break;
unfetch_interval:
assert(beg_interval);
p = beg_interval;
beg_interval = NULL;
/* normal_char and normal_backslash need `c'. */
PATFETCH(c);
if (!(syntax & RE_NO_BK_BRACES)) {
if (p > pattern && p[-1] == '\\')
goto normal_backslash;
}
goto normal_char;
case 'w':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
laststart = b;
BUF_PUSH(wordchar);
break;
case 'W':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
laststart = b;
BUF_PUSH(notwordchar);
break;
case '<':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(wordbeg);
break;
case '>':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(wordend);
break;
case 'b':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(wordbound);
break;
case 'B':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(notwordbound);
break;
case '`':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(begbuf);
break;
case '\'':
if (re_syntax_options & RE_NO_GNU_OPS)
goto normal_char;
BUF_PUSH(endbuf);
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (syntax & RE_NO_BK_REFS)
goto normal_char;
c1 = c - '0';
if (c1 > regnum)
return REG_ESUBREG;
/* Can't back reference to a subexpression if inside of it. */
if (group_in_compile_stack
(compile_stack, (regnum_t) c1))
goto normal_char;
laststart = b;
BUF_PUSH_2(duplicate, c1);
break;
case '+':
case '?':
if (syntax & RE_BK_PLUS_QM)
goto handle_plus;
else
goto normal_backslash;
default:
normal_backslash:
/* You might think it would be useful for \ to mean
not to translate; but if we don't translate it
it will never match anything. */
c = TRANSLATE(c);
goto normal_char;
}
break;
default:
/* Expects the character in `c'. */
normal_char:
/* If no exactn currently being built. */
if (!pending_exact
/* If last exactn not at current position. */
|| pending_exact + *pending_exact + 1 != b
/* We have only one byte following the exactn for the count. */
|| *pending_exact == (1 << BYTEWIDTH) - 1
/* If followed by a repetition operator. */
|| *p == '*' || *p == '^'
|| ((syntax & RE_BK_PLUS_QM)
? *p == '\\' && (p[1] == '+'
|| p[1] == '?')
: (*p == '+' || *p == '?'))
|| ((syntax & RE_INTERVALS)
&& ((syntax & RE_NO_BK_BRACES)
? *p == '{'
: (p[0] == '\\' && p[1] == '{')))) {
/* Start building a new exactn. */
laststart = b;
BUF_PUSH_2(exactn, 0);
pending_exact = b - 1;
}
BUF_PUSH(c);
(*pending_exact)++;
break;
} /* switch (c) */
} /* while p != pend */
/* Through the pattern now. */
if (fixup_alt_jump)
STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
if (!COMPILE_STACK_EMPTY)
return REG_EPAREN;
free(compile_stack.stack);
/* We have succeeded; set the length of the buffer. */
bufp->used = b - bufp->buffer;
return REG_NOERROR;
} /* regex_compile */
/* Subroutines for `regex_compile'. */
/* Store OP at LOC followed by two-byte integer parameter ARG. */
static void store_op1(op, loc, arg)
re_opcode_t op;
unsigned char *loc;
int arg;
{
*loc = (unsigned char) op;
STORE_NUMBER(loc + 1, arg);
}
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
static void store_op2(op, loc, arg1, arg2)
re_opcode_t op;
unsigned char *loc;
int arg1, arg2;
{
*loc = (unsigned char) op;
STORE_NUMBER(loc + 1, arg1);
STORE_NUMBER(loc + 3, arg2);
}
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
for OP followed by two-byte integer parameter ARG. */
static void insert_op1(op, loc, arg, end)
re_opcode_t op;
unsigned char *loc;
int arg;
unsigned char *end;
{
register unsigned char *pfrom = end;
register unsigned char *pto = end + 3;
while (pfrom != loc)
*--pto = *--pfrom;
store_op1(op, loc, arg);
}
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
static void insert_op2(op, loc, arg1, arg2, end)
re_opcode_t op;
unsigned char *loc;
int arg1, arg2;
unsigned char *end;
{
register unsigned char *pfrom = end;
register unsigned char *pto = end + 5;
while (pfrom != loc)
*--pto = *--pfrom;
store_op2(op, loc, arg1, arg2);
}
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
after an alternative or a begin-subexpression. We assume there is at
least one character before the ^. */
static boolean at_begline_loc_p(pattern, p, syntax)
const char *pattern, *p;
reg_syntax_t syntax;
{
const char *prev = p - 2;
boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
return
/* After a subexpression? */
(*prev == '('
&& (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
/* After an alternative? */
|| (*prev == '|'
&& (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
}
/* The dual of at_begline_loc_p. This one is for $. We assume there is
at least one character after the $, i.e., `P < PEND'. */
static boolean at_endline_loc_p(p, pend, syntax)
const char *p, *pend;
reg_syntax_t syntax;
{
const char *next = p;
boolean next_backslash = *next == '\\';
const char *next_next = p + 1 < pend ? p + 1 : NULL;
return
/* Before a subexpression? */
(syntax & RE_NO_BK_PARENS ? *next == ')'
: next_backslash && next_next && *next_next == ')')
/* Before an alternative? */
|| (syntax & RE_NO_BK_VBAR ? *next == '|'
: next_backslash && next_next && *next_next == '|');
}
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
false if it's not. */
static boolean group_in_compile_stack(compile_stack, regnum)
compile_stack_type compile_stack;
regnum_t regnum;
{
int this_element;
for (this_element = compile_stack.avail - 1;
this_element >= 0; this_element--)
if (compile_stack.stack[this_element].regnum == regnum)
return true;
return false;
}
/* Read the ending character of a range (in a bracket expression) from the
uncompiled pattern *P_PTR (which ends at PEND). We assume the
starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
Then we set the translation of all bits between the starting and
ending characters (inclusive) in the compiled pattern B.
Return an error code.
We use these short variable names so we can use the same macros as
`regex_compile' itself. */
static reg_errcode_t compile_range(p_ptr, pend, translate, syntax, b)
const char **p_ptr, *pend;
char *translate;
reg_syntax_t syntax;
unsigned char *b;
{
unsigned this_char;
const char *p = *p_ptr;
int range_start, range_end;
if (p == pend)
return REG_ERANGE;
/* Even though the pattern is a signed `char *', we need to fetch
with unsigned char *'s; if the high bit of the pattern character
is set, the range endpoints will be negative if we fetch using a
signed char *.
We also want to fetch the endpoints without translating them; the
appropriate translation is done in the bit-setting loop below. */
range_start = ((unsigned char *) p)[-2];
range_end = ((unsigned char *) p)[0];
/* Have to increment the pointer into the pattern string, so the
caller isn't still at the ending character. */
(*p_ptr)++;
/* If the start is after the end, the range is empty. */
if (range_start > range_end)
return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE :
REG_NOERROR;
/* Here we see why `this_char' has to be larger than an `unsigned
char' -- the range is inclusive, so if `range_end' == 0xff
(assuming 8-bit characters), we would otherwise go into an infinite
loop, since all characters <= 0xff. */
for (this_char = range_start; this_char <= range_end; this_char++) {
SET_LIST_BIT(TRANSLATE(this_char));
}
return REG_NOERROR;
}
/* Failure stack declarations and macros; both re_compile_fastmap and
re_match_2 use a failure stack. These have to be macros because of
REGEX_ALLOCATE. */
/* Number of failure points for which to initially allocate space
when matching. If this number is exceeded, we allocate more
space, so it is not a hard limit. */
#define INIT_FAILURE_ALLOC 5
/* Roughly the maximum number of failure points on the stack. Would be
exactly that if always used MAX_FAILURE_SPACE each time we failed.
This is a variable only so users of regex can assign to it; we never
change it ourselves. */
int re_max_failures = 2000;
typedef const unsigned char *fail_stack_elt_t;
typedef struct {
fail_stack_elt_t *stack;
unsigned size;
unsigned avail; /* Offset of next open position. */
} fail_stack_type;
#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
#define INIT_FAIL_STACK() \
do { \
fail_stack.stack = (fail_stack_elt_t *) \
REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
\
if (fail_stack.stack == NULL) \
return -2; \
\
fail_stack.size = INIT_FAILURE_ALLOC; \
fail_stack.avail = 0; \
} while (0)
/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
Return 1 if succeeds, and 0 if either ran out of memory
allocating space for it or it was already too large.
REGEX_REALLOCATE requires `destination' be declared. */
#define DOUBLE_FAIL_STACK(fail_stack) \
((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
? 0 \
: ((fail_stack).stack = (fail_stack_elt_t *) \
REGEX_REALLOCATE ((fail_stack).stack, \
(fail_stack).size * sizeof (fail_stack_elt_t), \
((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
\
(fail_stack).stack == NULL \
? 0 \
: ((fail_stack).size <<= 1, \
1)))
/* Push PATTERN_OP on FAIL_STACK.
Return 1 if was able to do so and 0 if ran out of memory allocating
space to do so. */
#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
((FAIL_STACK_FULL () \
&& !DOUBLE_FAIL_STACK (fail_stack)) \
? 0 \
: ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1))
/* This pushes an item onto the failure stack. Must be a four-byte
value. Assumes the variable `fail_stack'. Probably should only
be called from within `PUSH_FAILURE_POINT'. */
#define PUSH_FAILURE_ITEM(item) \
fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
/* The complement operation. Assumes `fail_stack' is nonempty. */
#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
/* Used to omit pushing failure point id's when we're not debugging. */
#define DEBUG_PUSH(item)
#define DEBUG_POP(item_addr)
/* Push the information about the state we will need
if we ever fail back to it.
Requires variables fail_stack, regstart, regend, reg_info, and
num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
declared.
Does `return FAILURE_CODE' if runs out of memory. */
#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
do { \
char *destination; \
/* Must be int, so when we don't save any registers, the arithmetic \
of 0 + -1 isn't done as unsigned. */ \
/* Can't be int, since there is not a shred of a guarantee that int \
is wide enough to hold a value of something to which pointer can \
be assigned */ \
s_reg_t this_reg; \
\
DEBUG_STATEMENT (failure_id++); \
DEBUG_STATEMENT (nfailure_points_pushed++); \
DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
\
DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
\
/* Ensure we have enough space allocated for what we will push. */ \
while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
{ \
if (!DOUBLE_FAIL_STACK (fail_stack)) \
return failure_code; \
\
DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
(fail_stack).size); \
DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
}
#define PUSH_FAILURE_POINT2(pattern_place, string_place, failure_code) \
/* Push the info, starting with the registers. */ \
DEBUG_PRINT1 ("\n"); \
\
PUSH_FAILURE_POINT_LOOP (); \
\
DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
PUSH_FAILURE_ITEM (lowest_active_reg); \
\
DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
PUSH_FAILURE_ITEM (highest_active_reg); \
\
DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
PUSH_FAILURE_ITEM (pattern_place); \
\
DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
size2); \
DEBUG_PRINT1 ("'\n"); \
PUSH_FAILURE_ITEM (string_place); \
\
DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
DEBUG_PUSH (failure_id); \
} while (0)
/* Pulled out of PUSH_FAILURE_POINT() to shorten the definition
of that macro. (for VAX C) */
#define PUSH_FAILURE_POINT_LOOP() \
for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
this_reg++) \
{ \
DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
DEBUG_STATEMENT (num_regs_pushed++); \
\
DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
PUSH_FAILURE_ITEM (regstart[this_reg]); \
\
DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
PUSH_FAILURE_ITEM (regend[this_reg]); \
\
DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
DEBUG_PRINT2 (" match_null=%d", \
REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
DEBUG_PRINT2 (" matched_something=%d", \
MATCHED_SOMETHING (reg_info[this_reg])); \
DEBUG_PRINT2 (" ever_matched=%d", \
EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
DEBUG_PRINT1 ("\n"); \
PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
}
/* This is the number of items that are pushed and popped on the stack
for each register. */
#define NUM_REG_ITEMS 3
/* Individual items aside from the registers. */
#define NUM_NONREG_ITEMS 4
/* We push at most this many items on the stack. */
#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
/* We actually push this many items. */
#define NUM_FAILURE_ITEMS \
((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
+ NUM_NONREG_ITEMS)
/* How many items can still be added to the stack without overflowing it. */
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
/* Pops what PUSH_FAIL_STACK pushes.
We restore into the parameters, all of which should be lvalues:
STR -- the saved data position.
PAT -- the saved pattern position.
LOW_REG, HIGH_REG -- the highest and lowest active registers.
REGSTART, REGEND -- arrays of string positions.
REG_INFO -- array of information about each subexpression.
Also assumes the variables `fail_stack' and (if debugging), `bufp',
`pend', `string1', `size1', `string2', and `size2'. */
#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
{ \
DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
s_reg_t this_reg; \
const unsigned char *string_temp; \
\
assert (!FAIL_STACK_EMPTY ()); \
\
/* Remove failure points and point to how many regs pushed. */ \
DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
\
assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
\
DEBUG_POP (&failure_id); \
DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
\
/* If the saved string location is NULL, it came from an \
on_failure_keep_string_jump opcode, and we want to throw away the \
saved NULL, thus retaining our current position in the string. */ \
string_temp = POP_FAILURE_ITEM (); \
if (string_temp != NULL) \
str = (const char *) string_temp; \
\
DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
DEBUG_PRINT1 ("'\n"); \
\
pat = (unsigned char *) POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
\
POP_FAILURE_POINT2 (low_reg, high_reg, regstart, regend, reg_info);
/* Pulled out of POP_FAILURE_POINT() to shorten the definition
of that macro. (for MSC 5.1) */
#define POP_FAILURE_POINT2(low_reg, high_reg, regstart, regend, reg_info) \
\
/* Restore register info. */ \
high_reg = (active_reg_t) POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
\
low_reg = (active_reg_t) POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
\
for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
{ \
DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
\
reg_info[this_reg].word = POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
\
regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
\
regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
} \
\
DEBUG_STATEMENT (nfailure_points_popped++); \
} /* POP_FAILURE_POINT */
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
characters can start a string that matches the pattern. This fastmap
is used by re_search to skip quickly over impossible starting points.
The caller must supply the address of a (1 << BYTEWIDTH)-byte data
area as BUFP->fastmap.
We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
the pattern buffer.
Returns 0 if we succeed, -2 if an internal error. */
int re_compile_fastmap(bufp)
struct re_pattern_buffer *bufp;
{
int j, k;
fail_stack_type fail_stack;
char *destination;
/* We don't push any register information onto the failure stack. */
unsigned num_regs = 0;
register char *fastmap = bufp->fastmap;
unsigned char *pattern = bufp->buffer;
const unsigned char *p = pattern;
register unsigned char *pend = pattern + bufp->used;
/* Assume that each path through the pattern can be null until
proven otherwise. We set this false at the bottom of switch
statement, to which we get only if a particular path doesn't
match the empty string. */
boolean path_can_be_null = true;
/* We aren't doing a `succeed_n' to begin with. */
boolean succeed_n_p = false;
assert(fastmap != NULL && p != NULL);
INIT_FAIL_STACK();
bzero(fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
bufp->fastmap_accurate = 1; /* It will be when we're done. */
bufp->can_be_null = 0;
while (p != pend || !FAIL_STACK_EMPTY()) {
if (p == pend) {
bufp->can_be_null |= path_can_be_null;
/* Reset for next path. */
path_can_be_null = true;
p = fail_stack.stack[--fail_stack.avail];
}
/* We should never be about to go beyond the end of the pattern. */
assert(p < pend);
switch ((re_opcode_t) * p++) {
/* I guess the idea here is to simply not bother with a fastmap
if a backreference is used, since it's too hard to figure out
the fastmap for the corresponding group. Setting
`can_be_null' stops `re_search_2' from using the fastmap, so
that is all we do. */
case duplicate:
bufp->can_be_null = 1;
return 0;
/* Following are the cases which match a character. These end
with `break'. */
case exactn:
fastmap[p[1]] = 1;
break;
case charset:
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (p[j / BYTEWIDTH] &
(1 << (j % BYTEWIDTH)))
fastmap[j] = 1;
break;
case charset_not:
/* Chars beyond end of map must be allowed. */
for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
fastmap[j] = 1;
for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
if (!
(p[j / BYTEWIDTH] &
(1 << (j % BYTEWIDTH))))
fastmap[j] = 1;
break;
case wordchar:
for (j = 0; j < (1 << BYTEWIDTH); j++)
if (SYNTAX(j) == Sword)
fastmap[j] = 1;
break;
case notwordchar:
for (j = 0; j < (1 << BYTEWIDTH); j++)
if (SYNTAX(j) != Sword)
fastmap[j] = 1;
break;
case anychar:
/* `.' matches anything ... */
for (j = 0; j < (1 << BYTEWIDTH); j++)
fastmap[j] = 1;
/* ... except perhaps newline. */
if (!(bufp->syntax & RE_DOT_NEWLINE))
fastmap['\n'] = 0;
/* Return if we have already set `can_be_null'; if we have,
then the fastmap is irrelevant. Something's wrong here. */
else if (bufp->can_be_null)
return 0;
/* Otherwise, have to check alternative paths. */
break;
case no_op:
case begline:
case endline:
case begbuf:
case endbuf:
case wordbound:
case notwordbound:
case wordbeg:
case wordend:
case push_dummy_failure:
continue;
case jump_n:
case pop_failure_jump:
case maybe_pop_jump:
case jump:
case jump_past_alt:
case dummy_failure_jump:
EXTRACT_NUMBER_AND_INCR(j, p);
p += j;
if (j > 0)
continue;
/* Jump backward implies we just went through the body of a
loop and matched nothing. Opcode jumped to should be
`on_failure_jump' or `succeed_n'. Just treat it like an
ordinary jump. For a * loop, it has pushed its failure
point already; if so, discard that as redundant. */
if ((re_opcode_t) * p != on_failure_jump
&& (re_opcode_t) * p != succeed_n)
continue;
p++;
EXTRACT_NUMBER_AND_INCR(j, p);
p += j;
/* If what's on the stack is where we are now, pop it. */
if (!FAIL_STACK_EMPTY()
&& fail_stack.stack[fail_stack.avail - 1] == p)
fail_stack.avail--;
continue;
case on_failure_jump:
case on_failure_keep_string_jump:
handle_on_failure_jump:
EXTRACT_NUMBER_AND_INCR(j, p);
/* For some patterns, e.g., `(a?)?', `p+j' here points to the
end of the pattern. We don't want to push such a point,
since when we restore it above, entering the switch will
increment `p' past the end of the pattern. We don't need
to push such a point since we obviously won't find any more
fastmap entries beyond `pend'. Such a pattern can match
the null string, though. */
if (p + j < pend) {
if (!PUSH_PATTERN_OP(p + j, fail_stack))
return -2;
} else
bufp->can_be_null = 1;
if (succeed_n_p) {
EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
succeed_n_p = false;
}
continue;
case succeed_n:
/* Get to the number of times to succeed. */
p += 2;
/* Increment p past the n for when k != 0. */
EXTRACT_NUMBER_AND_INCR(k, p);
if (k == 0) {
p -= 4;
succeed_n_p = true; /* Spaghetti code alert. */
goto handle_on_failure_jump;
}
continue;
case set_number_at:
p += 4;
continue;
case start_memory:
case stop_memory:
p += 2;
continue;
default:
abort(); /* We have listed all the cases. */
} /* switch *p++ */
/* Getting here means we have found the possible starting
characters for one path of the pattern -- and that the empty
string does not match. We need not follow this path further.
Instead, look at the next alternative (remembered on the
stack), or quit if no more. The test at the top of the loop
does these things. */
path_can_be_null = false;
p = pend;
} /* while p */
/* Set `can_be_null' for the last path (also the first path, if the
pattern is empty). */
bufp->can_be_null |= path_can_be_null;
return 0;
} /* re_compile_fastmap */
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
this memory for recording register information. STARTS and ENDS
must be allocated using the malloc library routine, and must each
be at least NUM_REGS * sizeof (regoff_t) bytes long.
If NUM_REGS == 0, then subsequent matches should allocate their own
register data.
Unless this function is called, the first search or match using
PATTERN_BUFFER will allocate its own register data, without
freeing the old data. */
void re_set_registers(bufp, regs, num_regs, starts, ends)
struct re_pattern_buffer *bufp;
struct re_registers *regs;
unsigned num_regs;
regoff_t *starts, *ends;
{
if (num_regs) {
bufp->regs_allocated = REGS_REALLOCATE;
regs->num_regs = num_regs;
regs->start = starts;
regs->end = ends;
} else {
bufp->regs_allocated = REGS_UNALLOCATED;
regs->num_regs = 0;
regs->start = regs->end = 0;
}
}
/* Searching routines. */
/* Like re_search_2, below, but only one string is specified, and
doesn't let you say where to stop matching. */
int re_search(bufp, string, size, startpos, range, regs)
struct re_pattern_buffer *bufp;
const char *string;
int size, startpos, range;
struct re_registers *regs;
{
return re_search_2(bufp, NULL, 0, string, size, startpos, range,
regs, size);
}
/* Using the compiled pattern in BUFP->buffer, first tries to match the
virtual concatenation of STRING1 and STRING2, starting first at index
STARTPOS, then at STARTPOS + 1, and so on.
STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
RANGE is how far to scan while trying to match. RANGE = 0 means try
only at STARTPOS; in general, the last start tried is STARTPOS +
RANGE.
In REGS, return the indices of the virtual concatenation of STRING1
and STRING2 that matched the entire BUFP->buffer and its contained
subexpressions.
Do not consider matching one past the index STOP in the virtual
concatenation of STRING1 and STRING2.
We return either the position in the strings at which the match was
found, -1 if no match, or -2 if error (such as failure
stack overflow). */
int
re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs,
stop)
struct re_pattern_buffer *bufp;
const char *string1, *string2;
int size1, size2;
int startpos;
int range;
struct re_registers *regs;
int stop;
{
int val;
register char *fastmap = bufp->fastmap;
register char *translate = bufp->translate;
int total_size = size1 + size2;
int endpos = startpos + range;
/* Check for out-of-range STARTPOS. */
if (startpos < 0 || startpos > total_size)
return -1;
/* Fix up RANGE if it might eventually take us outside
the virtual concatenation of STRING1 and STRING2. */
if (endpos < -1)
range = -1 - startpos;
else if (endpos > total_size)
range = total_size - startpos;
/* If the search isn't to be a backwards one, don't waste time in a
search for a pattern that must be anchored. */
if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf
&& range > 0) {
if (startpos > 0)
return -1;
else
range = 1;
}
/* Update the fastmap now if not correct already. */
if (fastmap && !bufp->fastmap_accurate)
if (re_compile_fastmap(bufp) == -2)
return -2;
/* Loop through the string, looking for a place to start matching. */
for (;;) {
/* If a fastmap is supplied, skip quickly over characters that
cannot be the start of a match. If the pattern can match the
null string, however, we don't need to skip characters; we want
the first null string. */
if (fastmap && startpos < total_size && !bufp->can_be_null) {
if (range > 0) { /* Searching forwards. */
register const char *d;
register int lim = 0;
int irange = range;
if (startpos < size1
&& startpos + range >= size1)
lim = range - (size1 - startpos);
d = (startpos >=
size1 ? string2 - size1 : string1) +
startpos;
/* Written out as an if-else to avoid testing `translate'
inside the loop. */
if (translate)
while (range > lim
&& !fastmap[(unsigned char)
translate[(unsigned char) *d++]])
range--;
else
while (range > lim
&& !fastmap[(unsigned char)
*d++])
range--;
startpos += irange - range;
} else { /* Searching backwards. */
register char c = (size1 == 0
|| startpos >=
size1 ? string2[startpos
- size1]
: string1[startpos]);
if (!fastmap[(unsigned char) TRANSLATE(c)])
goto advance;
}
}
/* If can't match the null string, and that's all we have left, fail. */
if (range >= 0 && startpos == total_size && fastmap
&& !bufp->can_be_null)
return -1;
val = re_match_2(bufp, string1, size1, string2, size2,
startpos, regs, stop);
if (val >= 0)
return startpos;
if (val == -2)
return -2;
advance:
if (!range)
break;
else if (range > 0) {
range--;
startpos++;
} else {
range++;
startpos--;
}
}
return -1;
} /* re_search_2 */
/* Structure for per-register (a.k.a. per-group) information.
This must not be longer than one word, because we push this value
onto the failure stack. Other register information, such as the
starting and ending positions (which are addresses), and the list of
inner groups (which is a bits list) are maintained in separate
variables.
We are making a (strictly speaking) nonportable assumption here: that
the compiler will pack our bit fields into something that fits into
the type of `word', i.e., is something that fits into one item on the
failure stack. */
/* Declarations and macros for re_match_2. */
typedef union {
fail_stack_elt_t word;
struct {
/* This field is one if this group can match the empty string,
zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
#define MATCH_NULL_UNSET_VALUE 3
unsigned match_null_string_p:2;
unsigned is_active:1;
unsigned matched_something:1;
unsigned ever_matched_something:1;
} bits;
} register_info_type;
#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
#define IS_ACTIVE(R) ((R).bits.is_active)
#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
static boolean group_match_null_string_p (unsigned char **p,
unsigned char *end,
register_info_type *
reg_info);
static boolean alt_match_null_string_p (unsigned char *p, unsigned char *end,
register_info_type * reg_info);
static boolean common_op_match_null_string_p (unsigned char **p,
unsigned char *end,
register_info_type * reg_info);
static int bcmp_translate (const char *s1, const char *s2,
int len, char *translate);
/* Call this when have matched a real character; it sets `matched' flags
for the subexpressions which we are currently inside. Also records
that those subexprs have matched. */
#define SET_REGS_MATCHED() \
do \
{ \
active_reg_t r; \
for (r = lowest_active_reg; r <= highest_active_reg; r++) \
{ \
MATCHED_SOMETHING (reg_info[r]) \
= EVER_MATCHED_SOMETHING (reg_info[r]) \
= 1; \
} \
} \
while (0)
/* This converts PTR, a pointer into one of the search strings `string1'
and `string2' into an offset from the beginning of that string. */
#define POINTER_TO_OFFSET(ptr) \
(FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
/* Registers are set to a sentinel when they haven't yet matched. */
#define REG_UNSET_VALUE ((char *) -1)
#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
/* Macros for dealing with the split strings in re_match_2. */
#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
/* Call before fetching a character with *d. This switches over to
string2 if necessary. */
#define PREFETCH() \
while (d == dend) \
{ \
/* End of string2 => fail. */ \
if (dend == end_match_2) \
goto fail; \
/* End of string1 => advance to string2. */ \
d = string2; \
dend = end_match_2; \
}
/* Test if at very beginning or at very end of the virtual concatenation
of `string1' and `string2'. If only one string, it's `string2'. */
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
#define AT_STRINGS_END(d) ((d) == end2)
/* Test if D points to a character which is word-constituent. We have
two special cases to check for: if past the end of string1, look at
the first character in string2; and if before the beginning of
string2, look at the last character in string1. */
#define WORDCHAR_P(d) \
(SYNTAX ((d) == end1 ? *string2 \
: (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
== Sword)
/* Test if the character before D and the one at D differ with respect
to being word-constituent. */
#define AT_WORD_BOUNDARY(d) \
(AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
|| WORDCHAR_P (d - 1) != WORDCHAR_P (d))
/* Free everything we malloc. */
#define FREE_VARIABLES() alloca (0)
/* These values must meet several constraints. They must not be valid
register values; since we have a limit of 255 registers (because
we use only one byte in the pattern for the register number), we can
use numbers larger than 255. They must differ by 1, because of
NUM_FAILURE_ITEMS above. And the value for the lowest register must
be larger than the value for the highest register, so we do not try
to actually save any registers when none are active. */
#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
/* Matching routines. */
/* re_match is like re_match_2 except it takes only a single string. */
int re_match(bufp, string, size, pos, regs)
struct re_pattern_buffer *bufp;
const char *string;
int size, pos;
struct re_registers *regs;
{
return re_match_2(bufp, NULL, 0, string, size, pos, regs, size);
}
/* re_match_2 matches the compiled pattern in BUFP against the
the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
and SIZE2, respectively). We start matching at POS, and stop
matching at STOP.
If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
store offsets for the substring each group matched in REGS. See the
documentation for exactly how many groups we fill.
We return -1 if no match, -2 if an internal error (such as the
failure stack overflowing). Otherwise, we return the length of the
matched substring. */
int re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
struct re_pattern_buffer *bufp;
const char *string1, *string2;
int size1, size2;
int pos;
struct re_registers *regs;
int stop;
{
/* General temporaries. */
int mcnt;
unsigned char *p1;
/* Just past the end of the corresponding string. */
const char *end1, *end2;
/* Pointers into string1 and string2, just past the last characters in
each to consider matching. */
const char *end_match_1, *end_match_2;
/* Where we are in the data, and the end of the current string. */
const char *d, *dend;
/* Where we are in the pattern, and the end of the pattern. */
unsigned char *p = bufp->buffer;
register unsigned char *pend = p + bufp->used;
/* We use this to map every character in the string. */
char *translate = bufp->translate;
/* Failure point stack. Each place that can handle a failure further
down the line pushes a failure point on this stack. It consists of
restart, regend, and reg_info for all registers corresponding to
the subexpressions we're currently inside, plus the number of such
registers, and, finally, two char *'s. The first char * is where
to resume scanning the pattern; the second one is where to resume
scanning the strings. If the latter is zero, the failure point is
a ``dummy''; if a failure happens and the failure point is a dummy,
it gets discarded and the next next one is tried. */
fail_stack_type fail_stack;
/* We fill all the registers internally, independent of what we
return, for use in backreferences. The number here includes
an element for register zero. */
size_t num_regs = bufp->re_nsub + 1;
/* The currently active registers. */
active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
/* Information on the contents of registers. These are pointers into
the input strings; they record just what was matched (on this
attempt) by a subexpression part of the pattern, that is, the
regnum-th regstart pointer points to where in the pattern we began
matching and the regnum-th regend points to right after where we
stopped matching the regnum-th subexpression. (The zeroth register
keeps track of what the whole pattern matches.) */
const char **regstart = 0, **regend = 0;
/* If a group that's operated upon by a repetition operator fails to
match anything, then the register for its start will need to be
restored because it will have been set to wherever in the string we
are when we last see its open-group operator. Similarly for a
register's end. */
const char **old_regstart = 0, **old_regend = 0;
/* The is_active field of reg_info helps us keep track of which (possibly
nested) subexpressions we are currently in. The matched_something
field of reg_info[reg_num] helps us tell whether or not we have
matched any of the pattern so far this time through the reg_num-th
subexpression. These two fields get reset each time through any
loop their register is in. */
register_info_type *reg_info = 0;
/* The following record the register info as found in the above
variables when we find a match better than any we've seen before.
This happens as we backtrack through the failure points, which in
turn happens only if we have not yet matched the entire string. */
unsigned best_regs_set = false;
const char **best_regstart = 0, **best_regend = 0;
/* Logically, this is `best_regend[0]'. But we don't want to have to
allocate space for that if we're not allocating space for anything
else (see below). Also, we never need info about register 0 for
any of the other register vectors, and it seems rather a kludge to
treat `best_regend' differently than the rest. So we keep track of
the end of the best match so far in a separate variable. We
initialize this to NULL so that when we backtrack the first time
and need to test it, it's not garbage. */
const char *match_end = NULL;
/* Used when we pop values we don't care about. */
const char **reg_dummy = 0;
register_info_type *reg_info_dummy = 0;
DEBUG_PRINT1("\n\nEntering re_match_2.\n");
INIT_FAIL_STACK();
/* Do not bother to initialize all the register variables if there are
no groups in the pattern, as it takes a fair amount of time. If
there are groups, we include space for register 0 (the whole
pattern), even though we never use it, since it simplifies the
array indexing. We should fix this. */
if (bufp->re_nsub) {
regstart = REGEX_TALLOC(num_regs, const char *);
regend = REGEX_TALLOC(num_regs, const char *);
old_regstart = REGEX_TALLOC(num_regs, const char *);
old_regend = REGEX_TALLOC(num_regs, const char *);
best_regstart = REGEX_TALLOC(num_regs, const char *);
best_regend = REGEX_TALLOC(num_regs, const char *);
reg_info = REGEX_TALLOC(num_regs, register_info_type);
reg_dummy = REGEX_TALLOC(num_regs, const char *);
reg_info_dummy =
REGEX_TALLOC(num_regs, register_info_type);
if (!
(regstart && regend && old_regstart && old_regend
&& reg_info && best_regstart && best_regend
&& reg_dummy && reg_info_dummy)) {
FREE_VARIABLES();
return -2;
}
}
/* The starting position is bogus. */
if (pos < 0 || pos > size1 + size2) {
FREE_VARIABLES();
return -1;
}
/* Initialize subexpression text positions to -1 to mark ones that no
start_memory/stop_memory has been seen for. Also initialize the
register information struct. */
for (mcnt = 1; mcnt < num_regs; mcnt++) {
regstart[mcnt] = regend[mcnt]
= old_regstart[mcnt] = old_regend[mcnt] =
REG_UNSET_VALUE;
REG_MATCH_NULL_STRING_P(reg_info[mcnt]) =
MATCH_NULL_UNSET_VALUE;
IS_ACTIVE(reg_info[mcnt]) = 0;
MATCHED_SOMETHING(reg_info[mcnt]) = 0;
EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
}
/* We move `string1' into `string2' if the latter's empty -- but not if
`string1' is null. */
if (size2 == 0 && string1 != NULL) {
string2 = string1;
size2 = size1;
string1 = 0;
size1 = 0;
}
end1 = string1 + size1;
end2 = string2 + size2;
/* Compute where to stop matching, within the two strings. */
if (stop <= size1) {
end_match_1 = string1 + stop;
end_match_2 = string2;
} else {
end_match_1 = end1;
end_match_2 = string2 + stop - size1;
}
/* `p' scans through the pattern as `d' scans through the data.
`dend' is the end of the input string that `d' points within. `d'
is advanced into the following input string whenever necessary, but
this happens before fetching; therefore, at the beginning of the
loop, `d' can be pointing at the end of a string, but it cannot
equal `string2'. */
if (size1 > 0 && pos <= size1) {
d = string1 + pos;
dend = end_match_1;
} else {
d = string2 + pos - size1;
dend = end_match_2;
}
DEBUG_PRINT1("The compiled pattern is: ");
DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
DEBUG_PRINT1("The string to match is: `");
DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
DEBUG_PRINT1("'\n");
/* This loops over pattern commands. It exits by returning from the
function if the match is complete, or it drops through if the match
fails at this starting point in the input data. */
for (;;) {
DEBUG_PRINT2("\n0x%x: ", p);
if (p == pend) { /* End of pattern means we might have succeeded. */
DEBUG_PRINT1("end of pattern ... ");
/* If we haven't matched the entire string, and we want the
longest match, try backtracking. */
if (d != end_match_2) {
DEBUG_PRINT1("backtracking.\n");
if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
boolean same_str_p =
(FIRST_STRING_P(match_end)
== MATCHING_IN_FIRST_STRING);
/* If exceeds best match so far, save it. */
if (!best_regs_set
|| (same_str_p
&& d > match_end)
|| (!same_str_p
&&
!MATCHING_IN_FIRST_STRING))
{
best_regs_set = true;
match_end = d;
DEBUG_PRINT1
("\nSAVING match as best so far.\n");
for (mcnt = 1;
mcnt < num_regs;
mcnt++) {
best_regstart[mcnt]
=
regstart[mcnt];
best_regend[mcnt] =
regend[mcnt];
}
}
goto fail;
}
/* If no failure points, don't restore garbage. */
else if (best_regs_set) {
restore_best_regs:
/* Restore best match. It may happen that `dend ==
end_match_1' while the restored d is in string2.
For example, the pattern `x.*y.*z' against the
strings `x-' and `y-z-', if the two strings are
not consecutive in memory. */
DEBUG_PRINT1
("Restoring best registers.\n");
d = match_end;
dend = ((d >= string1 && d <= end1)
? end_match_1 :
end_match_2);
for (mcnt = 1; mcnt < num_regs;
mcnt++) {
regstart[mcnt] =
best_regstart[mcnt];
regend[mcnt] =
best_regend[mcnt];
}
}
}
/* d != end_match_2 */
DEBUG_PRINT1("Accepting match.\n");
/* If caller wants register contents data back, do it. */
if (regs && !bufp->no_sub) {
/* Have the register data arrays been allocated? */
if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one
extra element beyond `num_regs' for the `-1' marker
GNU code uses. */
regs->num_regs =
MAX(RE_NREGS, num_regs + 1);
regs->start =
TALLOC(regs->num_regs,
regoff_t);
regs->end =
TALLOC(regs->num_regs,
regoff_t);
if (regs->start == NULL
|| regs->end == NULL)
return -2;
bufp->regs_allocated =
REGS_REALLOCATE;
} else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already
allocated, reallocate them. If we need fewer, just
leave it alone. */
if (regs->num_regs < num_regs + 1) {
regs->num_regs =
num_regs + 1;
RETALLOC(regs->start,
regs->num_regs,
regoff_t);
RETALLOC(regs->end,
regs->num_regs,
regoff_t);
if (regs->start == NULL
|| regs->end == NULL)
return -2;
}
} else {
/* These braces fend off a "empty body in an else-statement"
warning under GCC when assert expands to nothing. */
assert(bufp->regs_allocated ==
REGS_FIXED);
}
/* Convert the pointer data in `regstart' and `regend' to
indices. Register zero has to be set differently,
since we haven't kept track of any info for it. */
if (regs->num_regs > 0) {
regs->start[0] = pos;
regs->end[0] =
(MATCHING_IN_FIRST_STRING ? d -
string1 : d - string2 +
size1);
}
/* Go through the first `min (num_regs, regs->num_regs)'
registers, since that is all we initialized. */
for (mcnt = 1;
mcnt < MIN(num_regs, regs->num_regs);
mcnt++) {
if (REG_UNSET(regstart[mcnt])
|| REG_UNSET(regend[mcnt]))
regs->start[mcnt] =
regs->end[mcnt] = -1;
else {
regs->start[mcnt] =
POINTER_TO_OFFSET
(regstart[mcnt]);
regs->end[mcnt] =
POINTER_TO_OFFSET
(regend[mcnt]);
}
}
/* If the regs structure we return has more elements than
were in the pattern, set the extra elements to -1. If
we (re)allocated the registers, this is the case,
because we always allocate enough to have at least one
-1 at the end. */
for (mcnt = num_regs;
mcnt < regs->num_regs; mcnt++)
regs->start[mcnt] =
regs->end[mcnt] = -1;
}
/* regs && !bufp->no_sub */
FREE_VARIABLES();
DEBUG_PRINT4
("%u failure points pushed, %u popped (%u remain).\n",
nfailure_points_pushed,
nfailure_points_popped,
nfailure_points_pushed -
nfailure_points_popped);
DEBUG_PRINT2("%u registers pushed.\n",
num_regs_pushed);
mcnt = d - pos - (MATCHING_IN_FIRST_STRING
? string1 : string2 - size1);
DEBUG_PRINT2("Returning %d from re_match_2.\n",
mcnt);
return mcnt;
}
/* Otherwise match next pattern command. */
switch ((re_opcode_t) * p++) {
/* Ignore these. Used to ignore the n of succeed_n's which
currently have n == 0. */
case no_op:
DEBUG_PRINT1("EXECUTING no_op.\n");
break;
/* Match the next n pattern characters exactly. The following
byte in the pattern defines n, and the n bytes after that
are the characters to match. */
case exactn:
mcnt = *p++;
DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
/* This is written out as an if-else so we don't waste time
testing `translate' inside the loop. */
if (translate) {
do {
PREFETCH();
if (translate[(unsigned char) *d++]
!= (char) *p++)
goto fail;
}
while (--mcnt);
} else {
do {
PREFETCH();
if (*d++ != (char) *p++)
goto fail;
}
while (--mcnt);
}
SET_REGS_MATCHED();
break;
/* Match any character except possibly a newline or a null. */
case anychar:
DEBUG_PRINT1("EXECUTING anychar.\n");
PREFETCH();
if ((!(bufp->syntax & RE_DOT_NEWLINE)
&& TRANSLATE(*d) == '\n')
|| (bufp->syntax & RE_DOT_NOT_NULL
&& TRANSLATE(*d) == '\000'))
goto fail;
SET_REGS_MATCHED();
DEBUG_PRINT2(" Matched `%d'.\n", *d);
d++;
break;
case charset:
case charset_not:
{
register unsigned char c;
boolean not =
(re_opcode_t) * (p - 1) == charset_not;
DEBUG_PRINT2("EXECUTING charset%s.\n",
not ? "_not" : "");
PREFETCH();
c = TRANSLATE(*d); /* The character to match. */
/* Cast to `unsigned' instead of `unsigned char' in case the
bit list is a full 32 bytes long. */
if (c < (unsigned) (*p * BYTEWIDTH)
&& p[1 +
c / BYTEWIDTH] & (1 << (c %
BYTEWIDTH)))
not = !not;
p += 1 + *p;
if (!not)
goto fail;
SET_REGS_MATCHED();
d++;
break;
}
/* The beginning of a group is represented by start_memory.
The arguments are the register number in the next byte, and the
number of groups inner to this one in the next. The text
matched within the group is recorded (in the internal
registers data structure) under the register number. */
case start_memory:
DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n",
*p, p[1]);
/* Find out if this group can match the empty string. */
p1 = p; /* To send to group_match_null_string_p. */
if (REG_MATCH_NULL_STRING_P(reg_info[*p]) ==
MATCH_NULL_UNSET_VALUE)
REG_MATCH_NULL_STRING_P(reg_info[*p])
= group_match_null_string_p(&p1, pend,
reg_info);
/* Save the position in the string where we were the last time
we were at this open-group operator in case the group is
operated upon by a repetition operator, e.g., with `(a*)*b'
against `ab'; then we want to ignore where we are now in
the string in case this attempt to match fails. */
old_regstart[*p] =
REG_MATCH_NULL_STRING_P(reg_info[*p])
? REG_UNSET(regstart[*p]) ? d : regstart[*p]
: regstart[*p];
DEBUG_PRINT2(" old_regstart: %d\n",
POINTER_TO_OFFSET(old_regstart[*p]));
regstart[*p] = d;
DEBUG_PRINT2(" regstart: %d\n",
POINTER_TO_OFFSET(regstart[*p]));
IS_ACTIVE(reg_info[*p]) = 1;
MATCHED_SOMETHING(reg_info[*p]) = 0;
/* This is the new highest active register. */
highest_active_reg = *p;
/* If nothing was active before, this is the new lowest active
register. */
if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
lowest_active_reg = *p;
/* Move past the register number and inner group count. */
p += 2;
break;
/* The stop_memory opcode represents the end of a group. Its
arguments are the same as start_memory's: the register
number, and the number of inner groups. */
case stop_memory:
DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n",
*p, p[1]);
/* We need to save the string position the last time we were at
this close-group operator in case the group is operated
upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
against `aba'; then we want to ignore where we are now in
the string in case this attempt to match fails. */
old_regend[*p] =
REG_MATCH_NULL_STRING_P(reg_info[*p])
? REG_UNSET(regend[*p]) ? d : regend[*p]
: regend[*p];
DEBUG_PRINT2(" old_regend: %d\n",
POINTER_TO_OFFSET(old_regend[*p]));
regend[*p] = d;
DEBUG_PRINT2(" regend: %d\n",
POINTER_TO_OFFSET(regend[*p]));
/* This register isn't active anymore. */
IS_ACTIVE(reg_info[*p]) = 0;
/* If this was the only register active, nothing is active
anymore. */
if (lowest_active_reg == highest_active_reg) {
lowest_active_reg = NO_LOWEST_ACTIVE_REG;
highest_active_reg = NO_HIGHEST_ACTIVE_REG;
} else { /* We must scan for the new highest active register, since
it isn't necessarily one less than now: consider
(a(b)c(d(e)f)g). When group 3 ends, after the f), the
new highest active register is 1. */
unsigned char r = *p - 1;
while (r > 0 && !IS_ACTIVE(reg_info[r]))
r--;
/* If we end up at register zero, that means that we saved
the registers as the result of an `on_failure_jump', not
a `start_memory', and we jumped to past the innermost
`stop_memory'. For example, in ((.)*) we save
registers 1 and 2 as a result of the *, but when we pop
back to the second ), we are at the stop_memory 1.
Thus, nothing is active. */
if (r == 0) {
lowest_active_reg =
NO_LOWEST_ACTIVE_REG;
highest_active_reg =
NO_HIGHEST_ACTIVE_REG;
} else
highest_active_reg = r;
}
/* If just failed to match something this time around with a
group that's operated on by a repetition operator, try to
force exit from the ``loop'', and restore the register
information for this group that we had before trying this
last match. */
if ((!MATCHED_SOMETHING(reg_info[*p])
|| (re_opcode_t) p[-3] == start_memory)
&& (p + 2) < pend) {
boolean is_a_jump_n = false;
p1 = p + 2;
mcnt = 0;
switch ((re_opcode_t) * p1++) {
case jump_n:
is_a_jump_n = true;
case pop_failure_jump:
case maybe_pop_jump:
case jump:
case dummy_failure_jump:
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
if (is_a_jump_n)
p1 += 2;
break;
default:
/* do nothing */ ;
}
p1 += mcnt;
/* If the next operation is a jump backwards in the pattern
to an on_failure_jump right before the start_memory
corresponding to this stop_memory, exit from the loop
by forcing a failure after pushing on the stack the
on_failure_jump's jump in the pattern, and d. */
if (mcnt < 0
&& (re_opcode_t) * p1 ==
on_failure_jump
&& (re_opcode_t) p1[3] == start_memory
&& p1[4] == *p) {
/* If this group ever matched anything, then restore
what its registers were before trying this last
failed match, e.g., with `(a*)*b' against `ab' for
regstart[1], and, e.g., with `((a*)*(b*)*)*'
against `aba' for regend[3].
Also restore the registers for inner groups for,
e.g., `((a*)(b*))*' against `aba' (register 3 would
otherwise get trashed). */
if (EVER_MATCHED_SOMETHING
(reg_info[*p])) {
unsigned r;
EVER_MATCHED_SOMETHING
(reg_info[*p]) = 0;
/* Restore this and inner groups' (if any) registers. */
for (r = *p;
r < *p + *(p + 1);
r++) {
regstart[r] =
old_regstart
[r];
/* xx why this test? */
if ((s_reg_t)
old_regend[r]
>=
(s_reg_t)
regstart[r])
regend[r] =
old_regend
[r];
}
}
p1++;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
PUSH_FAILURE_POINT(p1 + mcnt, d,
-2);
PUSH_FAILURE_POINT2(p1 + mcnt, d,
-2);
goto fail;
}
}
/* Move past the register number and the inner group count. */
p += 2;
break;
/* \<digit> has been turned into a `duplicate' command which is
followed by the numeric value of <digit> as the register number. */
case duplicate:
{
register const char *d2, *dend2;
int regno = *p++; /* Get which register to match against. */
DEBUG_PRINT2("EXECUTING duplicate %d.\n",
regno);
/* Can't back reference a group which we've never matched. */
if (REG_UNSET(regstart[regno])
|| REG_UNSET(regend[regno]))
goto fail;
/* Where in input to try to start matching. */
d2 = regstart[regno];
/* Where to stop matching; if both the place to start and
the place to stop matching are in the same string, then
set to the place to stop, otherwise, for now have to use
the end of the first string. */
dend2 = ((FIRST_STRING_P(regstart[regno])
== FIRST_STRING_P(regend[regno]))
? regend[regno] : end_match_1);
for (;;) {
/* If necessary, advance to next segment in register
contents. */
while (d2 == dend2) {
if (dend2 == end_match_2)
break;
if (dend2 == regend[regno])
break;
/* End of string1 => advance to string2. */
d2 = string2;
dend2 = regend[regno];
}
/* At end of register contents => success */
if (d2 == dend2)
break;
/* If necessary, advance to next segment in data. */
PREFETCH();
/* How many characters left in this segment to match. */
mcnt = dend - d;
/* Want how many consecutive characters we can match in
one shot, so, if necessary, adjust the count. */
if (mcnt > dend2 - d2)
mcnt = dend2 - d2;
/* Compare that many; failure if mismatch, else move
past them. */
if (translate
? bcmp_translate(d, d2, mcnt,
translate)
: bcmp(d, d2, mcnt))
goto fail;
d += mcnt, d2 += mcnt;
}
}
break;
/* begline matches the empty string at the beginning of the string
(unless `not_bol' is set in `bufp'), and, if
`newline_anchor' is set, after newlines. */
case begline:
DEBUG_PRINT1("EXECUTING begline.\n");
if (AT_STRINGS_BEG(d)) {
if (!bufp->not_bol)
break;
} else if (d[-1] == '\n' && bufp->newline_anchor) {
break;
}
/* In all other cases, we fail. */
goto fail;
/* endline is the dual of begline. */
case endline:
DEBUG_PRINT1("EXECUTING endline.\n");
if (AT_STRINGS_END(d)) {
if (!bufp->not_eol)
break;
}
/* We have to ``prefetch'' the next character. */
else if ((d == end1 ? *string2 : *d) == '\n'
&& bufp->newline_anchor) {
break;
}
goto fail;
/* Match at the very beginning of the data. */
case begbuf:
DEBUG_PRINT1("EXECUTING begbuf.\n");
if (AT_STRINGS_BEG(d))
break;
goto fail;
/* Match at the very end of the data. */
case endbuf:
DEBUG_PRINT1("EXECUTING endbuf.\n");
if (AT_STRINGS_END(d))
break;
goto fail;
/* on_failure_keep_string_jump is used to optimize `.*\n'. It
pushes NULL as the value for the string on the stack. Then
`pop_failure_point' will keep the current value for the
string, instead of restoring it. To see why, consider
matching `foo\nbar' against `.*\n'. The .* matches the foo;
then the . fails against the \n. But the next thing we want
to do is match the \n against the \n; if we restored the
string value, we would be back at the foo.
Because this is used only in specific cases, we don't need to
check all the things that `on_failure_jump' does, to make
sure the right things get saved on the stack. Hence we don't
share its code. The only reason to push anything on the
stack at all is that otherwise we would have to change
`anychar's code to do something besides goto fail in this
case; that seems worse than this. */
case on_failure_keep_string_jump:
DEBUG_PRINT1
("EXECUTING on_failure_keep_string_jump");
EXTRACT_NUMBER_AND_INCR(mcnt, p);
DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
PUSH_FAILURE_POINT2(p + mcnt, NULL, -2);
break;
/* Uses of on_failure_jump:
Each alternative starts with an on_failure_jump that points
to the beginning of the next alternative. Each alternative
except the last ends with a jump that in effect jumps past
the rest of the alternatives. (They really jump to the
ending jump of the following alternative, because tensioning
these jumps is a hassle.)
Repeats start with an on_failure_jump that points past both
the repetition text and either the following jump or
pop_failure_jump back to this on_failure_jump. */
case on_failure_jump:
on_failure:
DEBUG_PRINT1("EXECUTING on_failure_jump");
EXTRACT_NUMBER_AND_INCR(mcnt, p);
DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
/* If this on_failure_jump comes right before a group (i.e.,
the original * applied to a group), save the information
for that group and all inner ones, so that if we fail back
to this point, the group's information will be correct.
For example, in \(a*\)*\1, we need the preceding group,
and in \(\(a*\)b*\)\2, we need the inner group. */
/* We can't use `p' to check ahead because we push
a failure point to `p + mcnt' after we do this. */
p1 = p;
/* We need to skip no_op's before we look for the
start_memory in case this on_failure_jump is happening as
the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
against aba. */
while (p1 < pend && (re_opcode_t) * p1 == no_op)
p1++;
if (p1 < pend
&& (re_opcode_t) * p1 == start_memory) {
/* We have a new highest active register now. This will
get reset at the start_memory we are about to get to,
but we will have saved all the registers relevant to
this repetition op, as described above. */
highest_active_reg = *(p1 + 1) + *(p1 + 2);
if (lowest_active_reg ==
NO_LOWEST_ACTIVE_REG)
lowest_active_reg = *(p1 + 1);
}
DEBUG_PRINT1(":\n");
PUSH_FAILURE_POINT(p + mcnt, d, -2);
PUSH_FAILURE_POINT2(p + mcnt, d, -2);
break;
/* A smart repeat ends with `maybe_pop_jump'.
We change it to either `pop_failure_jump' or `jump'. */
case maybe_pop_jump:
EXTRACT_NUMBER_AND_INCR(mcnt, p);
DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n",
mcnt);
{
register unsigned char *p2 = p;
/* Compare the beginning of the repeat with what in the
pattern follows its end. If we can establish that there
is nothing that they would both match, i.e., that we
would have to backtrack because of (as in, e.g., `a*a')
then we can change to pop_failure_jump, because we'll
never have to backtrack.
This is not true in the case of alternatives: in
`(a|ab)*' we do need to backtrack to the `ab' alternative
(e.g., if the string was `ab'). But instead of trying to
detect that here, the alternative has put on a dummy
failure point which is what we will end up popping. */
/* Skip over open/close-group commands. */
while (p2 + 2 < pend
&& ((re_opcode_t) * p2 ==
stop_memory
|| (re_opcode_t) * p2 ==
start_memory))
p2 += 3; /* Skip over args, too. */
/* If we're at the end of the pattern, we can change. */
if (p2 == pend) {
/* Consider what happens when matching ":\(.*\)"
against ":/". I don't really understand this code
yet. */
p[-3] =
(unsigned char)
pop_failure_jump;
DEBUG_PRINT1
(" End of pattern: change to `pop_failure_jump'.\n");
}
else if ((re_opcode_t) * p2 == exactn
|| (bufp->newline_anchor
&& (re_opcode_t) * p2 ==
endline)) {
register unsigned char c =
*p2 ==
(unsigned char) endline ? '\n'
: p2[2];
p1 = p + mcnt;
/* p1[0] ... p1[2] are the `on_failure_jump' corresponding
to the `maybe_finalize_jump' of this case. Examine what
follows. */
if ((re_opcode_t) p1[3] == exactn
&& p1[5] != c) {
p[-3] =
(unsigned char)
pop_failure_jump;
DEBUG_PRINT3
(" %c != %c => pop_failure_jump.\n",
c, p1[5]);
}
else if ((re_opcode_t) p1[3] ==
charset
|| (re_opcode_t) p1[3] ==
charset_not) {
int not =
(re_opcode_t) p1[3] ==
charset_not;
if (c <
(unsigned char) (p1[4]
*
BYTEWIDTH)
&& p1[5 +
c /
BYTEWIDTH] & (1
<<
(c
%
BYTEWIDTH)))
not = !not;
/* `not' is equal to 1 if c would match, which means
that we can't change to pop_failure_jump. */
if (!not) {
p[-3] =
(unsigned char)
pop_failure_jump;
DEBUG_PRINT1
(" No match => pop_failure_jump.\n");
}
}
}
}
p -= 2; /* Point at relative address again. */
if ((re_opcode_t) p[-1] != pop_failure_jump) {
p[-1] = (unsigned char) jump;
DEBUG_PRINT1(" Match => jump.\n");
goto unconditional_jump;
}
/* Note fall through. */
/* The end of a simple repeat has a pop_failure_jump back to
its matching on_failure_jump, where the latter will push a
failure point. The pop_failure_jump takes off failure
points put on by this pop_failure_jump's matching
on_failure_jump; we got through the pattern to here from the
matching on_failure_jump, so didn't fail. */
case pop_failure_jump:
{
/* We need to pass separate storage for the lowest and
highest registers, even though we don't care about the
actual values. Otherwise, we will restore only one
register from the stack, since lowest will == highest in
`pop_failure_point'. */
active_reg_t dummy_low_reg, dummy_high_reg;
unsigned char *pdummy;
const char *sdummy;
DEBUG_PRINT1
("EXECUTING pop_failure_jump.\n");
POP_FAILURE_POINT(sdummy, pdummy,
dummy_low_reg,
dummy_high_reg,
reg_dummy, reg_dummy,
reg_info_dummy);
}
/* Note fall through. */
/* Unconditionally jump (without popping any failure points). */
case jump:
unconditional_jump:
EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
p += mcnt; /* Do the jump. */
DEBUG_PRINT2("(to 0x%x).\n", p);
break;
/* We need this opcode so we can detect where alternatives end
in `group_match_null_string_p' et al. */
case jump_past_alt:
DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
goto unconditional_jump;
/* Normally, the on_failure_jump pushes a failure point, which
then gets popped at pop_failure_jump. We will end up at
pop_failure_jump, also, and with a pattern of, say, `a+', we
are skipping over the on_failure_jump, so we have to push
something meaningless for pop_failure_jump to pop. */
case dummy_failure_jump:
DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
/* It doesn't matter what we push for the string here. What
the code at `fail' tests is the value for the pattern. */
PUSH_FAILURE_POINT(0, 0, -2);
PUSH_FAILURE_POINT2(0, 0, -2);
goto unconditional_jump;
/* At the end of an alternative, we need to push a dummy failure
point in case we are followed by a `pop_failure_jump', because
we don't want the failure point for the alternative to be
popped. For example, matching `(a|ab)*' against `aab'
requires that we match the `ab' alternative. */
case push_dummy_failure:
DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
/* See comments just above at `dummy_failure_jump' about the
two zeroes. */
PUSH_FAILURE_POINT(0, 0, -2);
PUSH_FAILURE_POINT2(0, 0, -2);
break;
/* Have to succeed matching what follows at least n times.
After that, handle like `on_failure_jump'. */
case succeed_n:
EXTRACT_NUMBER(mcnt, p + 2);
DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
assert(mcnt >= 0);
/* Originally, this is how many times we HAVE to succeed. */
if (mcnt > 0) {
mcnt--;
p += 2;
STORE_NUMBER_AND_INCR(p, mcnt);
DEBUG_PRINT3(" Setting 0x%x to %d.\n", p,
mcnt);
} else if (mcnt == 0) {
DEBUG_PRINT2
(" Setting two bytes from 0x%x to no_op.\n",
p + 2);
p[2] = (unsigned char) no_op;
p[3] = (unsigned char) no_op;
goto on_failure;
}
break;
case jump_n:
EXTRACT_NUMBER(mcnt, p + 2);
DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
/* Originally, this is how many times we CAN jump. */
if (mcnt) {
mcnt--;
STORE_NUMBER(p + 2, mcnt);
goto unconditional_jump;
}
/* If don't have to jump any more, skip over the rest of command. */
else
p += 4;
break;
case set_number_at:
{
DEBUG_PRINT1("EXECUTING set_number_at.\n");
EXTRACT_NUMBER_AND_INCR(mcnt, p);
p1 = p + mcnt;
EXTRACT_NUMBER_AND_INCR(mcnt, p);
DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1,
mcnt);
STORE_NUMBER(p1, mcnt);
break;
}
case wordbound:
DEBUG_PRINT1("EXECUTING wordbound.\n");
if (AT_WORD_BOUNDARY(d))
break;
goto fail;
case notwordbound:
DEBUG_PRINT1("EXECUTING notwordbound.\n");
if (AT_WORD_BOUNDARY(d))
goto fail;
break;
case wordbeg:
DEBUG_PRINT1("EXECUTING wordbeg.\n");
if (WORDCHAR_P(d)
&& (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
break;
goto fail;
case wordend:
DEBUG_PRINT1("EXECUTING wordend.\n");
if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
&& (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
break;
goto fail;
case wordchar:
DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
PREFETCH();
if (!WORDCHAR_P(d))
goto fail;
SET_REGS_MATCHED();
d++;
break;
case notwordchar:
DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
PREFETCH();
if (WORDCHAR_P(d))
goto fail;
SET_REGS_MATCHED();
d++;
break;
default:
abort();
}
continue; /* Successfully executed one pattern command; keep going. */
/* We goto here if a matching operation fails. */
fail:
if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
DEBUG_PRINT1("\nFAIL:\n");
POP_FAILURE_POINT(d, p,
lowest_active_reg,
highest_active_reg, regstart,
regend, reg_info);
/* If this failure point is a dummy, try the next one. */
if (!p)
goto fail;
/* If we failed to the end of the pattern, don't examine *p. */
assert(p <= pend);
if (p < pend) {
boolean is_a_jump_n = false;
/* If failed to a backwards jump that's part of a repetition
loop, need to pop this failure point and use the next one. */
switch ((re_opcode_t) * p) {
case jump_n:
is_a_jump_n = true;
case maybe_pop_jump:
case pop_failure_jump:
case jump:
p1 = p + 1;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
p1 += mcnt;
if ((is_a_jump_n
&& (re_opcode_t) * p1 ==
succeed_n)
|| (!is_a_jump_n
&& (re_opcode_t) * p1 ==
on_failure_jump))
goto fail;
break;
default:
/* do nothing */ ;
}
}
if (d >= string1 && d <= end1)
dend = end_match_1;
} else
break; /* Matching at this starting point really fails. */
} /* for (;;) */
if (best_regs_set)
goto restore_best_regs;
FREE_VARIABLES();
return -1; /* Failure to match. */
} /* re_match_2 */
/* Subroutine definitions for re_match_2. */
/* We are passed P pointing to a register number after a start_memory.
Return true if the pattern up to the corresponding stop_memory can
match the empty string, and false otherwise.
If we find the matching stop_memory, sets P to point to one past its number.
Otherwise, sets P to an undefined byte less than or equal to END.
We don't handle duplicates properly (yet). */
static boolean group_match_null_string_p(p, end, reg_info)
unsigned char **p, *end;
register_info_type *reg_info;
{
int mcnt;
/* Point to after the args to the start_memory. */
unsigned char *p1 = *p + 2;
while (p1 < end) {
/* Skip over opcodes that can match nothing, and return true or
false, as appropriate, when we get to one that can't, or to the
matching stop_memory. */
switch ((re_opcode_t) * p1) {
/* Could be either a loop or a series of alternatives. */
case on_failure_jump:
p1++;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
/* If the next operation is not a jump backwards in the
pattern. */
if (mcnt >= 0) {
/* Go through the on_failure_jumps of the alternatives,
seeing if any of the alternatives cannot match nothing.
The last alternative starts with only a jump,
whereas the rest start with on_failure_jump and end
with a jump, e.g., here is the pattern for `a|b|c':
/on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
/on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
/exactn/1/c
So, we have to first go through the first (n-1)
alternatives and then deal with the last one separately. */
/* Deal with the first (n-1) alternatives, which start
with an on_failure_jump (see above) that jumps to right
past a jump_past_alt. */
while ((re_opcode_t) p1[mcnt - 3] ==
jump_past_alt) {
/* `mcnt' holds how many bytes long the alternative
is, including the ending `jump_past_alt' and
its number. */
if (!alt_match_null_string_p
(p1, p1 + mcnt - 3, reg_info))
return false;
/* Move to right after this alternative, including the
jump_past_alt. */
p1 += mcnt;
/* Break if it's the beginning of an n-th alternative
that doesn't begin with an on_failure_jump. */
if ((re_opcode_t) * p1 !=
on_failure_jump)
break;
/* Still have to check that it's not an n-th
alternative that starts with an on_failure_jump. */
p1++;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
if ((re_opcode_t) p1[mcnt - 3] !=
jump_past_alt) {
/* Get to the beginning of the n-th alternative. */
p1 -= 3;
break;
}
}
/* Deal with the last alternative: go back and get number
of the `jump_past_alt' just before it. `mcnt' contains
the length of the alternative. */
EXTRACT_NUMBER(mcnt, p1 - 2);
if (!alt_match_null_string_p
(p1, p1 + mcnt, reg_info))
return false;
p1 += mcnt; /* Get past the n-th alternative. */
} /* if mcnt > 0 */
break;
case stop_memory:
assert(p1[1] == **p);
*p = p1 + 2;
return true;
default:
if (!common_op_match_null_string_p
(&p1, end, reg_info))
return false;
}
} /* while p1 < end */
return false;
} /* group_match_null_string_p */
/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
It expects P to be the first byte of a single alternative and END one
byte past the last. The alternative can contain groups. */
static boolean alt_match_null_string_p(p, end, reg_info)
unsigned char *p, *end;
register_info_type *reg_info;
{
int mcnt;
unsigned char *p1 = p;
while (p1 < end) {
/* Skip over opcodes that can match nothing, and break when we get
to one that can't. */
switch ((re_opcode_t) * p1) {
/* It's a loop. */
case on_failure_jump:
p1++;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
p1 += mcnt;
break;
default:
if (!common_op_match_null_string_p
(&p1, end, reg_info))
return false;
}
} /* while p1 < end */
return true;
} /* alt_match_null_string_p */
/* Deals with the ops common to group_match_null_string_p and
alt_match_null_string_p.
Sets P to one after the op and its arguments, if any. */
static boolean common_op_match_null_string_p(p, end, reg_info)
unsigned char **p, *end;
register_info_type *reg_info;
{
int mcnt;
boolean ret;
int reg_no;
unsigned char *p1 = *p;
switch ((re_opcode_t) * p1++) {
case no_op:
case begline:
case endline:
case begbuf:
case endbuf:
case wordbeg:
case wordend:
case wordbound:
case notwordbound:
break;
case start_memory:
reg_no = *p1;
assert(reg_no > 0 && reg_no <= MAX_REGNUM);
ret = group_match_null_string_p(&p1, end, reg_info);
/* Have to set this here in case we're checking a group which
contains a group and a back reference to it. */
if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) ==
MATCH_NULL_UNSET_VALUE)
REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
if (!ret)
return false;
break;
/* If this is an optimized succeed_n for zero times, make the jump. */
case jump:
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
if (mcnt >= 0)
p1 += mcnt;
else
return false;
break;
case succeed_n:
/* Get to the number of times to succeed. */
p1 += 2;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
if (mcnt == 0) {
p1 -= 4;
EXTRACT_NUMBER_AND_INCR(mcnt, p1);
p1 += mcnt;
} else
return false;
break;
case duplicate:
if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
return false;
break;
case set_number_at:
p1 += 4;
default:
/* All other opcodes mean we cannot match the empty string. */
return false;
}
*p = p1;
return true;
} /* common_op_match_null_string_p */
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
bytes; nonzero otherwise. */
static int bcmp_translate(s1, s2, len, translate)
const char *s1, *s2;
register int len;
char *translate;
{
register const unsigned char *p1 = (const unsigned char *) s1,
*p2 = (const unsigned char *) s2;
while (len) {
if (translate[*p1++] != translate[*p2++])
return 1;
len--;
}
return 0;
}
/* Entry points for GNU code. */
/* re_compile_pattern is the GNU regular expression compiler: it
compiles PATTERN (of length SIZE) and puts the result in BUFP.
Returns 0 if the pattern was valid, otherwise an error string.
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
are set in BUFP on entry.
We call regex_compile to do the actual compilation. */
const char *re_compile_pattern(pattern, length, bufp)
const char *pattern;
size_t length;
struct re_pattern_buffer *bufp;
{
reg_errcode_t ret;
/* GNU code is written to assume at least RE_NREGS registers will be set
(and at least one extra will be -1). */
bufp->regs_allocated = REGS_UNALLOCATED;
/* And GNU code determines whether or not to get register information
by passing null for the REGS argument to re_match, etc., not by
setting no_sub. */
bufp->no_sub = 0;
/* Match anchors at newline. */
bufp->newline_anchor = 1;
ret = regex_compile(pattern, length, re_syntax_options, bufp);
return re_error_msg[(int) ret];
}
/* Entry points compatible with 4.2 BSD regex library. We don't define
them if this is an Emacs or POSIX compilation. */
/* POSIX.2 functions. Don't define these for Emacs. */
#if !NO_POSIX_COMPAT
/* regcomp takes a regular expression as a string and compiles it.
PREG is a regex_t *. We do not expect any fields to be initialized,
since POSIX says we shouldn't. Thus, we set
`buffer' to the compiled pattern;
`used' to the length of the compiled pattern;
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
REG_EXTENDED bit in CFLAGS is set; otherwise, to
RE_SYNTAX_POSIX_BASIC;
`newline_anchor' to REG_NEWLINE being set in CFLAGS;
`fastmap' and `fastmap_accurate' to zero;
`re_nsub' to the number of subexpressions in PATTERN.
PATTERN is the address of the pattern string.
CFLAGS is a series of bits which affect compilation.
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
use POSIX basic syntax.
If REG_NEWLINE is set, then . and [^...] don't match newline.
Also, regexec will try a match beginning after every newline.
If REG_ICASE is set, then we considers upper- and lowercase
versions of letters to be equivalent when matching.
If REG_NOSUB is set, then when PREG is passed to regexec, that
routine will report only success or failure, and nothing about the
registers.
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
the return codes and their meanings.) */
int regcomp(preg, pattern, cflags)
regex_t *preg;
const char *pattern;
int cflags;
{
reg_errcode_t ret;
reg_syntax_t syntax
= (cflags & REG_EXTENDED) ?
RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
/* regex_compile will allocate the space for the compiled pattern. */
preg->buffer = 0;
preg->allocated = 0;
preg->used = 0;
/* Don't bother to use a fastmap when searching. This simplifies the
REG_NEWLINE case: if we used a fastmap, we'd have to put all the
characters after newlines into the fastmap. This way, we just try
every character. */
preg->fastmap = 0;
if (cflags & REG_ICASE) {
unsigned i;
preg->translate = (char *) malloc(CHAR_SET_SIZE);
if (preg->translate == NULL)
return (int) REG_ESPACE;
/* Map uppercase characters to corresponding lowercase ones. */
for (i = 0; i < CHAR_SET_SIZE; i++)
preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
} else
preg->translate = NULL;
/* If REG_NEWLINE is set, newlines are treated differently. */
if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
syntax &= ~RE_DOT_NEWLINE;
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
/* It also changes the matching behavior. */
preg->newline_anchor = 1;
} else
preg->newline_anchor = 0;
preg->no_sub = !!(cflags & REG_NOSUB);
/* POSIX says a null character in the pattern terminates it, so we
can use strlen here in compiling the pattern. */
ret = regex_compile(pattern, strlen(pattern), syntax, preg);
/* POSIX doesn't distinguish between an unmatched open-group and an
unmatched close-group: both are REG_EPAREN. */
if (ret == REG_ERPAREN)
ret = REG_EPAREN;
return (int) ret;
}
/* regexec searches for a given pattern, specified by PREG, in the
string STRING.
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
least NMATCH elements, and we set them to the offsets of the
corresponding matched substrings.
EFLAGS specifies `execution flags' which affect matching: if
REG_NOTBOL is set, then ^ does not match at the beginning of the
string; if REG_NOTEOL is set, then $ does not match at the end.
We return 0 if we find a match and REG_NOMATCH if not. */
int regexec(preg, string, nmatch, pmatch, eflags)
const regex_t *preg;
const char *string;
size_t nmatch;
regmatch_t pmatch[];
int eflags;
{
int ret;
struct re_registers regs;
regex_t private_preg;
int len = strlen(string);
boolean want_reg_info = !preg->no_sub && nmatch > 0;
private_preg = *preg;
private_preg.not_bol = !!(eflags & REG_NOTBOL);
private_preg.not_eol = !!(eflags & REG_NOTEOL);
/* The user has told us exactly how many registers to return
information about, via `nmatch'. We have to pass that on to the
matching routines. */
private_preg.regs_allocated = REGS_FIXED;
if (want_reg_info) {
regs.num_regs = nmatch;
regs.start = TALLOC(nmatch, regoff_t);
regs.end = TALLOC(nmatch, regoff_t);
if (regs.start == NULL || regs.end == NULL)
return (int) REG_NOMATCH;
}
/* Perform the searching operation. */
ret = re_search(&private_preg, string, len,
/* start: */ 0, /* range: */ len,
want_reg_info ? ®s : (struct re_registers *) 0);
/* Copy the register information to the POSIX structure. */
if (want_reg_info) {
if (ret >= 0) {
unsigned r;
for (r = 0; r < nmatch; r++) {
pmatch[r].rm_so = regs.start[r];
pmatch[r].rm_eo = regs.end[r];
}
}
/* If we needed the temporary register info, free the space now. */
free(regs.start);
free(regs.end);
}
/* We want zero return to mean success, unlike `re_search'. */
return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
}
/* Returns a message corresponding to an error code, ERRCODE, returned
from either regcomp or regexec. We don't use PREG here. */
size_t regerror(errcode, preg, errbuf, errbuf_size)
int errcode;
const regex_t *preg;
char *errbuf;
size_t errbuf_size;
{
const char *msg;
size_t msg_size;
if (errcode < 0
|| errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
/* Only error codes returned by the rest of the code should be passed
to this routine. If we are given anything else, or if other regex
code generates an invalid error code, then the program has a bug.
Dump core so we can fix it. */
abort();
msg = re_error_msg[errcode];
/* POSIX doesn't require that we do anything in this case, but why
not be nice. */
if (!msg)
msg = "Success";
msg_size = strlen(msg) + 1; /* Includes the null. */
if (errbuf_size != 0) {
if (msg_size > errbuf_size) {
strncpy(errbuf, msg, errbuf_size - 1);
errbuf[errbuf_size - 1] = 0;
} else
strcpy(errbuf, msg);
}
return msg_size;
}
/* Free dynamically allocated space used by PREG. */
void regfree(preg)
regex_t *preg;
{
if (preg->buffer != NULL)
free(preg->buffer);
preg->buffer = NULL;
preg->allocated = 0;
preg->used = 0;
if (preg->fastmap != NULL)
free(preg->fastmap);
preg->fastmap = NULL;
preg->fastmap_accurate = 0;
if (preg->translate != NULL)
free(preg->translate);
preg->translate = NULL;
}
#endif /* !NO_POSIX_COMPAT */
|