1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
package data
// Slice stores N-component GPU or host data.
import (
"bytes"
"fmt"
"log"
"reflect"
"unsafe"
"github.com/mumax/3/util"
)
// Slice is like a [][]float32, but may be stored in GPU or host memory.
type Slice struct {
ptrs []unsafe.Pointer
size [3]int
memType int8
}
// this package must not depend on CUDA. If CUDA is
// loaded, these functions are set to cu.MemFree, ...
// NOTE: cpyDtoH and cpyHtoD are only needed to support 32-bit builds,
// otherwise, it could be removed in favor of memCpy only.
var (
memFree, memFreeHost func(unsafe.Pointer)
memCpy, memCpyDtoH, memCpyHtoD func(dst, src unsafe.Pointer, bytes int64)
)
// Internal: enables slices on GPU. Called upon cuda init.
func EnableGPU(free, freeHost func(unsafe.Pointer),
cpy, cpyDtoH, cpyHtoD func(dst, src unsafe.Pointer, bytes int64)) {
memFree = free
memFreeHost = freeHost
memCpy = cpy
memCpyDtoH = cpyDtoH
memCpyHtoD = cpyHtoD
}
// Make a CPU Slice with nComp components of size length.
func NewSlice(nComp int, size [3]int) *Slice {
length := prod(size)
ptrs := make([]unsafe.Pointer, nComp)
for i := range ptrs {
ptrs[i] = unsafe.Pointer(&(make([]float32, length)[0]))
}
return SliceFromPtrs(size, CPUMemory, ptrs)
}
func SliceFromArray(data [][]float32, size [3]int) *Slice {
nComp := len(data)
length := prod(size)
ptrs := make([]unsafe.Pointer, nComp)
for i := range ptrs {
if len(data[i]) != length {
panic("size mismatch")
}
ptrs[i] = unsafe.Pointer(&data[i][0])
}
return SliceFromPtrs(size, CPUMemory, ptrs)
}
// Return a slice without underlying storage. Used to represent a mask containing all 1's.
func NilSlice(nComp int, size [3]int) *Slice {
return SliceFromPtrs(size, GPUMemory, make([]unsafe.Pointer, nComp))
}
// Internal: construct a Slice using bare memory pointers.
func SliceFromPtrs(size [3]int, memType int8, ptrs []unsafe.Pointer) *Slice {
length := prod(size)
nComp := len(ptrs)
util.Argument(nComp > 0 && length > 0)
s := new(Slice)
s.ptrs = make([]unsafe.Pointer, nComp)
s.size = size
for c := range ptrs {
s.ptrs[c] = ptrs[c]
}
s.memType = memType
return s
}
// Frees the underlying storage and zeros the Slice header to avoid accidental use.
// Slices sharing storage will be invalid after Free. Double free is OK.
func (s *Slice) Free() {
if s == nil {
return
}
// free storage
switch s.memType {
case 0:
return // already freed
case GPUMemory:
for _, ptr := range s.ptrs {
memFree(ptr)
}
//case UnifiedMemory:
// for _, ptr := range s.ptrs {
// memFreeHost(ptr)
// }
case CPUMemory:
// nothing to do
default:
panic("invalid memory type")
}
s.Disable()
}
// INTERNAL. Overwrite struct fields with zeros to avoid
// accidental use after Free.
func (s *Slice) Disable() {
s.ptrs = s.ptrs[:0]
s.size = [3]int{0, 0, 0}
s.memType = 0
}
// value for Slice.memType
const (
CPUMemory = 1 << 0
GPUMemory = 1 << 1
//UnifiedMemory = CPUMemory | GPUMemory
)
// MemType returns the memory type of the underlying storage:
// CPUMemory, GPUMemory or UnifiedMemory
func (s *Slice) MemType() int {
return int(s.memType)
}
// GPUAccess returns whether the Slice is accessible by the GPU.
// true means it is either stored on GPU or in unified host memory.
func (s *Slice) GPUAccess() bool {
return s.memType&GPUMemory != 0
}
// CPUAccess returns whether the Slice is accessible by the CPU.
// true means it is stored in host memory.
func (s *Slice) CPUAccess() bool {
return s.memType&CPUMemory != 0
}
// NComp returns the number of components.
func (s *Slice) NComp() int {
return len(s.ptrs)
}
// Len returns the number of elements per component.
func (s *Slice) Len() int {
return prod(s.size)
}
func (s *Slice) Size() [3]int {
if s == nil {
return [3]int{0, 0, 0}
}
return s.size
}
// Comp returns a single component of the Slice.
func (s *Slice) Comp(i int) *Slice {
sl := new(Slice)
sl.ptrs = make([]unsafe.Pointer, 1)
sl.ptrs[0] = s.ptrs[i]
sl.size = s.size
sl.memType = s.memType
return sl
}
// DevPtr returns a CUDA device pointer to a component.
// Slice must have GPUAccess.
// It is safe to call on a nil slice, returns NULL.
func (s *Slice) DevPtr(component int) unsafe.Pointer {
if s == nil {
return nil
}
if !s.GPUAccess() {
panic("slice not accessible by GPU")
}
return s.ptrs[component]
}
const SIZEOF_FLOAT32 = 4
// Host returns the Slice as a [][]float32 indexed by component, cell number.
// It should have CPUAccess() == true.
func (s *Slice) Host() [][]float32 {
if !s.CPUAccess() {
log.Panic("slice not accessible by CPU")
}
list := make([][]float32, s.NComp())
for c := range list {
hdr := (*reflect.SliceHeader)(unsafe.Pointer(&list[c]))
hdr.Data = uintptr(s.ptrs[c])
hdr.Len = s.Len()
hdr.Cap = hdr.Len
}
return list
}
// Returns a copy of the Slice, allocated on CPU.
func (s *Slice) HostCopy() *Slice {
cpy := NewSlice(s.NComp(), s.Size())
Copy(cpy, s)
return cpy
}
func Copy(dst, src *Slice) {
if dst.NComp() != src.NComp() || dst.Len() != src.Len() {
panic(fmt.Sprintf("slice copy: illegal sizes: dst: %vx%v, src: %vx%v", dst.NComp(), dst.Len(), src.NComp(), src.Len()))
}
d, s := dst.GPUAccess(), src.GPUAccess()
bytes := SIZEOF_FLOAT32 * int64(dst.Len())
switch {
default:
panic("bug")
case d && s:
for c := 0; c < dst.NComp(); c++ {
memCpy(dst.DevPtr(c), src.DevPtr(c), bytes)
}
case s && !d:
for c := 0; c < dst.NComp(); c++ {
memCpyDtoH(dst.ptrs[c], src.DevPtr(c), bytes)
}
case !s && d:
for c := 0; c < dst.NComp(); c++ {
memCpyHtoD(dst.DevPtr(c), src.ptrs[c], bytes)
}
case !d && !s:
dst, src := dst.Host(), src.Host()
for c := range dst {
copy(dst[c], src[c])
}
}
}
// Floats returns the data as 3D array,
// indexed by cell position. Data should be
// scalar (1 component) and have CPUAccess() == true.
func (f *Slice) Scalars() [][][]float32 {
x := f.Tensors()
if len(x) != 1 {
panic(fmt.Sprintf("expecting 1 component, got %v", f.NComp()))
}
return x[0]
}
// Vectors returns the data as 4D array,
// indexed by component, cell position. Data should have
// 3 components and have CPUAccess() == true.
func (f *Slice) Vectors() [3][][][]float32 {
x := f.Tensors()
if len(x) != 3 {
panic(fmt.Sprintf("expecting 3 components, got %v", f.NComp()))
}
return [3][][][]float32{x[0], x[1], x[2]}
}
// Tensors returns the data as 4D array,
// indexed by component, cell position.
// Requires CPUAccess() == true.
func (f *Slice) Tensors() [][][][]float32 {
tensors := make([][][][]float32, f.NComp())
host := f.Host()
for i := range tensors {
tensors[i] = reshape(host[i], f.Size())
}
return tensors
}
// IsNil returns true if either s is nil or s.pointer[0] == nil
func (s *Slice) IsNil() bool {
if s == nil {
return true
}
return s.ptrs[0] == nil
}
func (s *Slice) String() string {
if s == nil {
return "nil"
}
var buf bytes.Buffer
util.Fprint(&buf, s.Tensors())
return buf.String()
}
func (s *Slice) Set(comp, ix, iy, iz int, value float64) {
s.checkComp(comp)
s.Host()[comp][s.Index(ix, iy, iz)] = float32(value)
}
func (s *Slice) SetVector(ix, iy, iz int, v Vector) {
i := s.Index(ix, iy, iz)
for c := range v {
s.Host()[c][i] = float32(v[c])
}
}
func (s *Slice) SetScalar(ix, iy, iz int, v float64) {
s.Host()[0][s.Index(ix, iy, iz)] = float32(v)
}
func (s *Slice) Get(comp, ix, iy, iz int) float64 {
s.checkComp(comp)
return float64(s.Host()[comp][s.Index(ix, iy, iz)])
}
func (s *Slice) checkComp(comp int) {
if comp < 0 || comp >= s.NComp() {
panic(fmt.Sprintf("slice: invalid component index: %v (number of components=%v)\n", comp, s.NComp()))
}
}
func (s *Slice) Index(ix, iy, iz int) int {
return Index(s.Size(), ix, iy, iz)
}
func Index(size [3]int, ix, iy, iz int) int {
if ix < 0 || ix >= size[X] || iy < 0 || iy >= size[Y] || iz < 0 || iz >= size[Z] {
panic(fmt.Sprintf("Slice index out of bounds: %v,%v,%v (bounds=%v)\n", ix, iy, iz, size))
}
return (iz*size[Y]+iy)*size[X] + ix
}
|