1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
package engine
import (
"github.com/mumax/3/cuda"
"github.com/mumax/3/data"
"github.com/mumax/3/draw"
"image"
"image/jpeg"
"math"
"net/http"
"sync"
)
type render struct {
mutex sync.Mutex
quant Quantity
comp string
layer, scale int
saveCount int // previous max slider value of time
rescaleBuf *data.Slice // GPU
imgBuf *data.Slice // CPU
img_ *image.RGBA
}
const (
maxScale = 32 // maximum zoom-out setting
maxImgSize = 512 // maximum render image size
)
// Render image of quantity.
func (g *guistate) ServeRender(w http.ResponseWriter, r *http.Request) {
g.render.mutex.Lock()
defer g.render.mutex.Unlock()
g.render.render()
jpeg.Encode(w, g.render.img_, &jpeg.Options{Quality: 100})
}
// rescale and download quantity, save in rescaleBuf
func (ren *render) download() {
InjectAndWait(func() {
if ren.quant == nil { // not yet set, default = m
ren.quant = &M
}
quant := ren.quant
size := MeshOf(quant).Size()
// don't slice out of bounds
renderLayer := ren.layer
if renderLayer >= size[Z] {
renderLayer = size[Z] - 1
}
if renderLayer < 0 {
renderLayer = 0
}
// scaling sanity check
if ren.scale < 1 {
ren.scale = 1
}
if ren.scale > maxScale {
ren.scale = maxScale
}
// Don't render too large images or we choke
for size[X]/ren.scale > maxImgSize {
ren.scale++
}
for size[Y]/ren.scale > maxImgSize {
ren.scale++
}
for i := range size {
size[i] /= ren.scale
if size[i] == 0 {
size[i] = 1
}
}
size[Z] = 1 // selects one layer
// make sure buffers are there
if ren.imgBuf.Size() != size {
ren.imgBuf = data.NewSlice(3, size) // always 3-comp, may be re-used
}
buf := ValueOf(quant)
defer cuda.Recycle(buf)
if !buf.GPUAccess() {
ren.imgBuf = Download(quant) // fallback (no zoom)
return
}
// make sure buffers are there (in CUDA context)
if ren.rescaleBuf.Size() != size {
ren.rescaleBuf.Free()
ren.rescaleBuf = cuda.NewSlice(1, size)
}
for c := 0; c < quant.NComp(); c++ {
cuda.Resize(ren.rescaleBuf, buf.Comp(c), renderLayer)
data.Copy(ren.imgBuf.Comp(c), ren.rescaleBuf)
}
})
}
var arrowSize = 16
func (ren *render) render() {
ren.download()
// imgBuf always has 3 components, we may need just one...
d := ren.imgBuf
comp := ren.comp
quant := ren.quant
if comp == "" {
normalize(d)
}
if comp != "" && quant.NComp() > 1 { // ... if one has been selected by gui
d = d.Comp(compstr[comp])
}
if quant.NComp() == 1 { // ...or if the original data only had one (!)
d = d.Comp(0)
}
if ren.img_ == nil {
ren.img_ = new(image.RGBA)
}
draw.On(ren.img_, d, "auto", "auto", arrowSize)
}
var compstr = map[string]int{"x": 0, "y": 1, "z": 2}
func normalize(f *data.Slice) {
a := f.Vectors()
maxnorm := 0.
for i := range a[0] {
for j := range a[0][i] {
for k := range a[0][i][j] {
x, y, z := a[0][i][j][k], a[1][i][j][k], a[2][i][j][k]
norm := math.Sqrt(float64(x*x + y*y + z*z))
if norm > maxnorm {
maxnorm = norm
}
}
}
}
factor := float32(1 / maxnorm)
for i := range a[0] {
for j := range a[0][i] {
for k := range a[0][i][j] {
a[0][i][j][k] *= factor
a[1][i][j][k] *= factor
a[2][i][j][k] *= factor
}
}
}
}
|