File: shape.go

package info (click to toggle)
mumax3 3.11.1-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid
  • size: 10,668 kB
  • sloc: makefile: 194; ansic: 155; sh: 86; javascript: 16
file content (371 lines) | stat: -rw-r--r-- 9,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
package engine

import (
	"image"
	_ "image/jpeg"
	_ "image/png"
	"math"

	"github.com/mumax/3/data"
	"github.com/mumax/3/httpfs"
	"github.com/mumax/3/util"
)

func init() {
	DeclFunc("Ellipsoid", Ellipsoid, "3D Ellipsoid with axes in meter")
	DeclFunc("Ellipse", Ellipse, "2D Ellipse with axes in meter")
	DeclFunc("Cone", Cone, "3D Cone with diameter and height in meter. The base is at z=0. If the height is positive, the tip points in the +z direction.")
	DeclFunc("Cylinder", Cylinder, "3D Cylinder with diameter and height in meter")
	DeclFunc("Circle", Circle, "2D Circle with diameter in meter")
	DeclFunc("Cuboid", Cuboid, "Cuboid with sides in meter")
	DeclFunc("Rect", Rect, "2D rectangle with size in meter")
	DeclFunc("Square", Square, "2D square with size in meter")
	DeclFunc("Triangle", Triangle, "2D triangle with vertices (x0, y0), (x1, y1) and (x2, y2)")
	DeclFunc("XRange", XRange, "Part of space between x1 (inclusive) and x2 (exclusive), in meter")
	DeclFunc("YRange", YRange, "Part of space between y1 (inclusive) and y2 (exclusive), in meter")
	DeclFunc("ZRange", ZRange, "Part of space between z1 (inclusive) and z2 (exclusive), in meter")
	DeclFunc("Layers", Layers, "Part of space between cell layer1 (inclusive) and layer2 (exclusive), in integer indices")
	DeclFunc("Layer", Layer, "Single layer (along z), by integer index starting from 0")
	DeclFunc("Universe", Universe, "Entire space")
	DeclFunc("Cell", Cell, "Single cell with given integer index (i, j, k)")
	DeclFunc("ImageShape", ImageShape, "Use black/white image as shape")
	DeclFunc("GrainRoughness", GrainRoughness, "Grainy surface with different heights per grain "+
		"with a typical grain size (first argument), minimal height (second argument), and maximal "+
		"height (third argument). The last argument is a seed for the random number generator.")
}

// geometrical shape for setting sample geometry
type Shape func(x, y, z float64) bool

// Ellipsoid with given diameters
func Ellipsoid(diamx, diamy, diamz float64) Shape {
	return func(x, y, z float64) bool {
		return sqr64(x/diamx)+sqr64(y/diamy)+sqr64(z/diamz) <= 0.25
	}
}

func Ellipse(diamx, diamy float64) Shape {
	return Ellipsoid(diamx, diamy, math.Inf(1))
}

// 3D Cone with base at z=0 and vertex at z=height.
func Cone(diam, height float64) Shape {
	return func(x, y, z float64) bool {
		return (height-z)*z >= 0 && sqr64(x/diam)+sqr64(y/diam) <= 0.25*sqr64(1-z/height)
	}
}

func Circle(diam float64) Shape {
	return Cylinder(diam, math.Inf(1))
}

// cylinder along z.
func Cylinder(diam, height float64) Shape {
	return func(x, y, z float64) bool {
		return z <= height/2 && z >= -height/2 &&
			sqr64(x/diam)+sqr64(y/diam) <= 0.25
	}
}

// 3D Rectangular slab with given sides.
func Cuboid(sidex, sidey, sidez float64) Shape {
	return func(x, y, z float64) bool {
		rx, ry, rz := sidex/2, sidey/2, sidez/2
		return x < rx && x > -rx && y < ry && y > -ry && z < rz && z > -rz
	}
}

// 2D Rectangle with given sides.
func Rect(sidex, sidey float64) Shape {
	return func(x, y, z float64) bool {
		rx, ry := sidex/2, sidey/2
		return x < rx && x > -rx && y < ry && y > -ry
	}
}

// 2D square with given side.
func Square(side float64) Shape {
	return Rect(side, side)
}

// 2D triangle with given vertices.
func Triangle(x0, y0, x1, y1, x2, y2 float64) Shape {
	denom := x0*(y1-y2) + x1*(y2-y0) + x2*(y0-y1) // 2 * area
	if denom == 0 {
		return func(x, y, z float64) bool { return false }
	}
	A2m1 := 1 / denom

	Sc := A2m1 * (y0*x2 - x0*y2)
	Sx := A2m1 * (y2 - y0)
	Sy := A2m1 * (x0 - x2)

	Tc := A2m1 * (x0*y1 - y0*x1)
	Tx := A2m1 * (y0 - y1)
	Ty := A2m1 * (x1 - x0)

	return func(x, y, z float64) bool {
		// barycentric coordinates
		s := Sc + Sx*x + Sy*y
		t := Tc + Tx*x + Ty*y
		return ((0 <= s) && (0 <= t) && (s+t <= 1))
	}
}

// All cells with x-coordinate between a and b
func XRange(a, b float64) Shape {
	return func(x, y, z float64) bool {
		return x >= a && x < b
	}
}

// All cells with y-coordinate between a and b
func YRange(a, b float64) Shape {
	return func(x, y, z float64) bool {
		return y >= a && y < b
	}
}

// All cells with z-coordinate between a and b
func ZRange(a, b float64) Shape {
	return func(x, y, z float64) bool {
		return z >= a && z < b
	}
}

// Cell layers #a (inclusive) up to #b (exclusive).
func Layers(a, b int) Shape {
	Nz := Mesh().Size()[Z]
	if a < 0 || a > Nz || b < 0 || b < a {
		util.Fatal("layers ", a, ":", b, " out of bounds (0 - ", Nz, ")")
	}
	c := Mesh().CellSize()[Z]
	z1 := Index2Coord(0, 0, a)[Z] - c/2
	z2 := Index2Coord(0, 0, b)[Z] - c/2
	return ZRange(z1, z2)
}

func Layer(index int) Shape {
	return Layers(index, index+1)
}

// Single cell with given index
func Cell(ix, iy, iz int) Shape {
	c := Mesh().CellSize()
	pos := Index2Coord(ix, iy, iz)
	x1 := pos[X] - c[X]/2
	y1 := pos[Y] - c[Y]/2
	z1 := pos[Z] - c[Z]/2
	x2 := pos[X] + c[X]/2
	y2 := pos[Y] + c[Y]/2
	z2 := pos[Z] + c[Z]/2
	return func(x, y, z float64) bool {
		return x > x1 && x < x2 &&
			y > y1 && y < y2 &&
			z > z1 && z < z2
	}
}

func Universe() Shape {
	return universe
}

// The entire space.
func universe(x, y, z float64) bool {
	return true
}

func ImageShape(fname string) Shape {
	r, err1 := httpfs.Open(fname)
	CheckRecoverable(err1)
	defer r.Close()
	img, _, err2 := image.Decode(r)
	CheckRecoverable(err2)

	width := img.Bounds().Max.X
	height := img.Bounds().Max.Y

	// decode image into bool matrix for fast pixel lookup
	inside := make([][]bool, height)
	for iy := range inside {
		inside[iy] = make([]bool, width)
	}
	for iy := 0; iy < height; iy++ {
		for ix := 0; ix < width; ix++ {
			r, g, b, a := img.At(ix, height-1-iy).RGBA()
			if a > 128 && r+g+b < (0xFFFF*3)/2 {
				inside[iy][ix] = true
			}
		}
	}

	// stretch the image onto the gridsize
	c := Mesh().CellSize()
	cx, cy := c[X], c[Y]
	N := Mesh().Size()
	nx, ny := float64(N[X]), float64(N[Y])
	w, h := float64(width), float64(height)
	return func(x, y, z float64) bool {
		ix := int((w/nx)*(x/cx) + 0.5*w)
		iy := int((h/ny)*(y/cy) + 0.5*h)
		if ix < 0 || ix >= width || iy < 0 || iy >= height {
			return false
		} else {
			return inside[iy][ix]
		}
	}
}

func VoxelShape(voxels *data.Slice, a, b, c float64) Shape {
	//component dimension check, expect 1D points
	if voxels.NComp() != 1 {
		util.Fatal("Voxel array fed has a wrong value dimension: ", voxels.NComp(), ", Aborting!")
	}

	//cut FP array into bool array
	arrSize := voxels.Size()
	voxelArr := make([]bool, arrSize[0]*arrSize[1]*arrSize[2])
	for ix := 0; ix < arrSize[0]; ix++ {
		for iy := 0; iy < arrSize[1]; iy++ {
			for iz := 0; iz < arrSize[2]; iz++ {
				voxelArr[iz*arrSize[0]*arrSize[1]+iy*arrSize[0]+ix] = voxels.Get(0, ix, iy, iz) > 0.5
			}
		}
	}

	//the predicate
	voxelSize := [3]float64{a, b, c}
	return func(x, y, z float64) bool {
		var ind [3]int
		coord := [3]float64{x, y, z}
		for c := 0; c < 3; c++ {
			//truncation applies floor by default
			ind[c] = int(coord[c]/voxelSize[c] + float64(arrSize[c])/2)
			if ind[c] < 0 || ind[c] >= arrSize[c] {
				//there is no geometry outside of the imported array
				return false
			}
		}

		//if not fallen through check against the previous array
		return voxelArr[ind[2]*arrSize[0]*arrSize[1]+ind[1]*arrSize[0]+ind[0]]
	}
}

func GrainRoughness(grainsize, zmin, zmax float64, seed int) Shape {
	t := newTesselation(grainsize, 256, int64(seed))
	return func(x, y, z float64) bool {
		if z <= zmin {
			return true
		}
		if z >= zmax {
			return false
		}
		r := t.RegionOf(x, y, z)
		return (z-zmin)/(zmax-zmin) < (float64(r) / 256)
	}
}

// Transl returns a translated copy of the shape.
func (s Shape) Transl(dx, dy, dz float64) Shape {
	return func(x, y, z float64) bool {
		return s(x-dx, y-dy, z-dz)
	}
}

// Infinitely repeats the shape with given period in x, y, z.
// A period of 0 or infinity means no repetition.
func (s Shape) Repeat(periodX, periodY, periodZ float64) Shape {
	return func(x, y, z float64) bool {
		return s(fmod(x, periodX), fmod(y, periodY), fmod(z, periodZ))
	}
}

func fmod(a, b float64) float64 {
	if b == 0 || math.IsInf(b, 1) {
		return a
	}
	if math.Abs(a) > b/2 {
		return sign(a) * (math.Mod(math.Abs(a+b/2), b) - b/2)
	} else {
		return a
	}
}

// Scale returns a scaled copy of the shape.
func (s Shape) Scale(sx, sy, sz float64) Shape {
	return func(x, y, z float64) bool {
		return s(x/sx, y/sy, z/sz)
	}
}

// Rotates the shape around the Z-axis, over θ radians.
func (s Shape) RotZ(θ float64) Shape {
	cos := math.Cos(θ)
	sin := math.Sin(θ)
	return func(x, y, z float64) bool {
		x_ := x*cos + y*sin
		y_ := -x*sin + y*cos
		return s(x_, y_, z)
	}
}

// Rotates the shape around the Y-axis, over θ radians.
func (s Shape) RotY(θ float64) Shape {
	cos := math.Cos(θ)
	sin := math.Sin(θ)
	return func(x, y, z float64) bool {
		x_ := x*cos - z*sin
		z_ := x*sin + z*cos
		return s(x_, y, z_)
	}
}

// Rotates the shape around the X-axis, over θ radians.
func (s Shape) RotX(θ float64) Shape {
	cos := math.Cos(θ)
	sin := math.Sin(θ)
	return func(x, y, z float64) bool {
		y_ := y*cos + z*sin
		z_ := -y*sin + z*cos
		return s(x, y_, z_)
	}
}

// Union of shapes a and b (logical OR).
func (a Shape) Add(b Shape) Shape {
	return func(x, y, z float64) bool {
		return a(x, y, z) || b(x, y, z)
	}
}

// Intersection of shapes a and b (logical AND).
func (a Shape) Intersect(b Shape) Shape {
	return func(x, y, z float64) bool {
		return a(x, y, z) && b(x, y, z)
	}
}

// Inverse (outside) of shape (logical NOT).
func (s Shape) Inverse() Shape {
	return func(x, y, z float64) bool {
		return !s(x, y, z)
	}
}

// Removes b from a (logical a AND NOT b)
func (a Shape) Sub(b Shape) Shape {
	return func(x, y, z float64) bool {
		return a(x, y, z) && !b(x, y, z)
	}
}

// Logical XOR of shapes a and b
func (a Shape) Xor(b Shape) Shape {
	return func(x, y, z float64) bool {
		A, B := a(x, y, z), b(x, y, z)
		return (A || B) && !(A && B)
	}
}

func sqr64(x float64) float64 { return x * x }