File: interface.c

package info (click to toggle)
mumps 5.8.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 22,624 kB
  • sloc: fortran: 455,982; ansic: 14,533; makefile: 684; xml: 527; f90: 181; sh: 130
file content (762 lines) | stat: -rw-r--r-- 27,197 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*****************************************************************************
/
/ SPACE (SPArse Cholesky Elimination) Library: interface.c
/
/ author        J"urgen Schulze, University of Paderborn
/ created       01jan26
/
/ This file contains some high level interface functions (only these
/ functions should be called by a user).
/
******************************************************************************/


#include <space.h>

/*****************************************************************************
    o Input:
        undirected graph G
        options -- if NULL, default options are used
           option[0] holds OPTION_ORDTYPE
           option[1] holds OPTION_NODE_SELECTION1
           option[2] holds OPTION_NODE_SELECTION2
           option[3] holds OPTION_NODE_SELECTION3
           option[4] holds OPTION_DOMAIN_SIZE
           option[5] holds OPTION_MSGLVL
    o Output:
        elimination/front tree T reflecting the ordering of G
        cpus -- if NULL, no timing information is pulled back
           cpus[0]  holds TIME_COMPRESS
           cpus[1]  holds TIME_MS
           cpus[2]  holds TIME_MULTILEVEL
           cpus[3]  holds TIME_INITDOMDEC
           cpus[4]  holds TIME_COARSEDOMDEC
           cpus[5]  holds TIME_INITSEP
           cpus[6]  holds TIME_REFINESEP
           cpus[7]  holds TIME_SMOOTH
           cpus[8]  holds TIME_BOTTOMUP
           cpus[9]  holds TIME_UPDADJNCY
           cpus[10] holds TIME_FINDINODES
           cpus[11] holds TIME_UPDSCORE
    o Comments:
        this function computes an ordering for G; it returns an elimination
        tree T; permutation vectors perm, invp can be extracted from T by
        calling function permFromElimTree(T, perm, invp)
******************************************************************************/
elimtree_t*
SPACE_ordering(graph_t *G, options_t *options, timings_t *cpus)
{ graph_t       *Gc;
  multisector_t *ms;
  minprior_t    *minprior;
  elimtree_t    *T, *T2;
  timings_t	cpusOrd[ORD_TIME_SLOTS];
  options_t     default_options[] = { SPACE_ORDTYPE, SPACE_NODE_SELECTION1,
                       SPACE_NODE_SELECTION2, SPACE_NODE_SELECTION3,
                       SPACE_DOMAIN_SIZE, SPACE_MSGLVL };
  PORD_INT           *vtxmap, istage, totnstep, totnzf;
  FLOAT         totops;

  /* --------------------------------------------------
     set default options, if no other options specified
     -------------------------------------------------- */
  if (options == NULL)
    options = default_options;

  /* ----------------
     reset all timers
     ---------------- */
  pord_resettimer(cpusOrd[TIME_COMPRESS]);
  pord_resettimer(cpusOrd[TIME_MS]);
  pord_resettimer(cpusOrd[TIME_MULTILEVEL]);
  pord_resettimer(cpusOrd[TIME_INITDOMDEC]);
  pord_resettimer(cpusOrd[TIME_COARSEDOMDEC]);
  pord_resettimer(cpusOrd[TIME_INITSEP]);
  pord_resettimer(cpusOrd[TIME_REFINESEP]);
  pord_resettimer(cpusOrd[TIME_SMOOTH]);
  pord_resettimer(cpusOrd[TIME_BOTTOMUP]);
  pord_resettimer(cpusOrd[TIME_UPDADJNCY]);
  pord_resettimer(cpusOrd[TIME_FINDINODES]);
  pord_resettimer(cpusOrd[TIME_UPDSCORE]);

  /* ------------------
     compress the graph
     ------------------ */
  pord_starttimer(cpusOrd[TIME_COMPRESS]);
  mymalloc(vtxmap, G->nvtx, PORD_INT);
  Gc = compressGraph(G, vtxmap);
  pord_stoptimer(cpusOrd[TIME_COMPRESS]);

  if (Gc != NULL)
   { if (options[OPTION_MSGLVL] > 0)
       printf("compressed graph constructed (#nodes %d, #edges %d)\n",
              Gc->nvtx, Gc->nedges >> 1);
   }
  else
   { Gc = G;
     free(vtxmap);
     if (options[OPTION_MSGLVL] > 0)
       printf("no compressed graph constructed\n");
   }

  /* -------------------
     compute multisector
     ------------------- */
  
  
  pord_starttimer(cpusOrd[TIME_MS]);
  ms = constructMultisector(Gc, options, cpusOrd);
  pord_stoptimer(cpusOrd[TIME_MS]);
	

  if (options[OPTION_MSGLVL] > 0)
    printf("quality of multisector: #stages %d, #nodes %d, weight %d\n",
           ms->nstages, ms->nnodes, ms->totmswght);

  /* ---------------------------------
     compute minimum priority ordering
     --------------------------------- */
  pord_starttimer(cpusOrd[TIME_BOTTOMUP])
  minprior = setupMinPriority(ms);
  T = orderMinPriority(minprior, options, cpusOrd);
  pord_stoptimer(cpusOrd[TIME_BOTTOMUP]);

  if (options[OPTION_MSGLVL] > 0)
   { totnstep = totnzf = 0;
     totops = 0.0;
     for (istage = 0; istage < ms->nstages; istage++)
      { totnstep += minprior->stageinfo[istage].nstep;
        totnzf   += minprior->stageinfo[istage].nzf;
        totops   += minprior->stageinfo[istage].ops;
      }
     printf("quality of ordering: #steps %d, nzl %d, ops %e\n", totnstep,
            totnzf, totops);
   }

  /* -----------------------
     expand elimination tree
     ----------------------- */
  if (Gc != G)
   { T2 = expandElimTree(T, vtxmap, G->nvtx);
     freeElimTree(T);
     freeGraph(Gc);
     free(vtxmap);
   }
  else T2 = T;

  /* --------------------------------------------------
     pull back timing results, if vector cpus available
     -------------------------------------------------- */
  if (cpus != NULL)
   { cpus[0]  = cpusOrd[TIME_COMPRESS];
     cpus[1]  = cpusOrd[TIME_MS];
     cpus[2]  = cpusOrd[TIME_MULTILEVEL];
     cpus[3]  = cpusOrd[TIME_INITDOMDEC];
     cpus[4]  = cpusOrd[TIME_COARSEDOMDEC];
     cpus[5]  = cpusOrd[TIME_INITSEP];
     cpus[6]  = cpusOrd[TIME_REFINESEP];
     cpus[7]  = cpusOrd[TIME_SMOOTH];
     cpus[8]  = cpusOrd[TIME_BOTTOMUP];
     cpus[9]  = cpusOrd[TIME_UPDADJNCY];
     cpus[10] = cpusOrd[TIME_FINDINODES];
     cpus[11] = cpusOrd[TIME_UPDSCORE];
   }

  /* ----------------------
     free memory and return
     ---------------------- */
  freeMultisector(ms);
  freeMinPriority(minprior);
  return(T2);
}


#if defined(cleaned_version)
/*****************************************************************************
    o Input:
        elimination/front tree T
        max. number of zeros that is allowed to be introduced in front
    o Output:
        transformed elimination/front tree T'
    o Comments:
        the goal is to make T (obtained by orderMinPriority or
        setupElimTree) more appropiate for the multifrontal algorithm
******************************************************************************/
elimtree_t*
SPACE_transformElimTree(elimtree_t *T, PORD_INT maxzeros)
{ elimtree_t *T2, *T3;

  /* -----------------------------------------------------
     1st: determine the fundamental fronts
          this step significantly improves the cache reuse
     ----------------------------------------------------- */
  T2 = fundamentalFronts(T);

  /* -----------------------------------------------------------------
     2nd: group together small subtrees into one front
          this step reduces the number of fronts and thus the overhead
          associated with them; the expense is added storage for the
          logically zero entries and the factor operations on them
     ------------------------------------------------------------------ */
  T3 = mergeFronts(T2, maxzeros);
  freeElimTree(T2);

  /* --------------------------------------------------------------
     3rd: order the children of a front so that the working storage
          in the multifrontal algorithm is minimized
     -------------------------------------------------------------- */
  (void)justifyFronts(T3);
  return(T3);
}

/*****************************************************************************
    o Input:
        transformed elimination/front tree T, input matrix A
    o Output:
        initial factor matrix L of the permuted input matrix PAP
    o Comments: L contains nonzeros of PAP; all other entries are set to 0.0
******************************************************************************/
factorMtx_t*
SPACE_symbFac(elimtree_t *T, inputMtx_t *A)
{ factorMtx_t *L;
  frontsub_t  *frontsub;
  css_t       *css;
  inputMtx_t  *PAP;
  elimtree_t  *PTP;
  PORD_INT         *perm, neqs, nelem;

  /* ------------------------------------------------------
     extract permutation vectors from T and permute T and A
     ------------------------------------------------------ */
  neqs = A->neqs;
  mymalloc(perm, neqs, PORD_INT);
  permFromElimTree(T, perm);
  PTP = permuteElimTree(T, perm);
  PAP = permuteInputMtx(A, perm);

  /* -------------------------------------------------------------------
     create factor matrix L of PAP, i.e.
      (1) create the subscript structure of the fronts, i.e. frontsub
      (2) use frontsub to create the compressed subscript structure of L
      (3) allocate memory for L and the nonzeros of L, i.e. L->nzl
      (4) init. L with the nonzeros of PAP
     ------------------------------------------------------------------- */
  frontsub = setupFrontSubscripts(PTP, PAP);
  css = setupCSSFromFrontSubscripts(frontsub);

  nelem = css->xnzl[neqs];
  L = newFactorMtx(nelem);
  L->perm = perm;
  L->frontsub = frontsub;
  L->css = css;

  initFactorMtx(L, PAP);

  /* -----------------------------------------------------
     free permuted input matrix and return
     note: PTP and perm have been inherited by frontsub, L
     ----------------------------------------------------- */
  freeInputMtx(PAP);
  return(L);
}


/*****************************************************************************
    o Input:
        transformed elimination/front tree
        initial factor matrix L of the permuted input matrix PAP
    o Output:
        factor matrix L of the permuted input matrix PAP
        cpus -- if NULL no timing information is pulled back
           cpus[0] holds TIME_INITFRONT
           cpus[1] holds TIME_EXPAND
           cpus[2] holds TIME_KERNEL
           cpus[3] holds TIME_INITUPD
    o Comments:
        this function does the actual numerical factorization; to
        improve register and cache reuse it uses a kernel of size 3x3
******************************************************************************/
void
SPACE_numFac(factorMtx_t *L, timings_t *cpus)
{ timings_t  cpusFactor[NUMFAC_TIME_SLOTS];

  /* ----------------
     reset all timers
     ---------------- */
  pord_resettimer(cpusFactor[TIME_INITFRONT]);
  pord_resettimer(cpusFactor[TIME_EXADD]);
  pord_resettimer(cpusFactor[TIME_KERNEL]);
  pord_resettimer(cpusFactor[TIME_INITUPD]);

  /* -------------------------
     compute Cholesky factor L
     ------------------------- */
  numfac(L, cpusFactor);

 /* --------------------------------------------------
     pull back timing results, if vector cpus available
     -------------------------------------------------- */
  if (cpus != NULL)
   { cpus[0] = cpusFactor[TIME_INITFRONT];
     cpus[1] = cpusFactor[TIME_EXADD];
     cpus[2] = cpusFactor[TIME_KERNEL];
     cpus[3] = cpusFactor[TIME_INITUPD];
   }
}


/*****************************************************************************
    o Input:
        transformed elimination/front tree
        factor matrix L of the permuted input matrix PAP
        right hand side vector rhs of the original system Ax = b
    o Output:
        solution vector xvec of the original system Ax = b
    o Comments:
        this function solves the remaining triangular systems;
******************************************************************************/
void
SPACE_solveTriangular(factorMtx_t *L, FLOAT *rhs, FLOAT *xvec)
{ FLOAT *yvec;
  PORD_INT   *perm;
  PORD_INT   neqs, k;

  perm = L->perm;
  neqs = L->css->neqs;

  /* -------------------------------------------
     set up permuted right hand side vector yvec
     ------------------------------------------- */
  mymalloc(yvec, neqs, FLOAT);
  for (k = 0; k < neqs; k++)
    yvec[perm[k]] = rhs[k];

  /* -------------------------
     solve Ly = b and L^Tz = y
     ------------------------- */
  forwardSubst1x1(L, yvec);
  backwardSubst1x1(L, yvec);

  /* ---------------------------------------------------------------
     extract from yvec the solution vector of the un-permuted system
     --------------------------------------------------------------- */
  for (k = 0; k < neqs; k++)
    xvec[k] = yvec[perm[k]];
  free(yvec);
}


/*****************************************************************************
    o Input:
        sparse matrix A, right hand side vector rhs
        options -- if NULL, default options are used
           option[0] holds OPTION_ORDTYPE
           option[1] holds OPTION_NODE_SELECTION1
           option[2] holds OPTION_NODE_SELECTION2
           option[3] holds OPTION_NODE_SELECTION3
           option[4] holds OPTION_DOMAIN_SIZE
           option[5] holds OPTION_MSGLVL
           option[6] holds OPTION_ETREE_NONZ
    o Output:
        solution vector xvec of the original system Ax = b
        cpus -- if NULL, no timing information is pulled back
           cpus[0]  holds time to construct the graph
           cpus[1]  holds time to compute the ordering
           cpus[2]  holds TIME_COMPRESS
           cpus[3]  holds TIME_MS
           cpus[4]  holds TIME_MULTILEVEL
           cpus[5]  holds TIME_INITDOMDEC
           cpus[6]  holds TIME_COARSEDOMDEC
           cpus[7]  holds TIME_INITSEP
           cpus[8]  holds TIME_REFINESEP
           cpus[9]  holds TIME_SMOOTH
           cpus[10] holds TIME_BOTTOMUP
           cpus[11] holds TIME_UPDADJNCY;
           cpus[12] holds TIME_FINDINODES
           cpus[13] holds TIME_UPDSCORE
           cpus[14] holds time to transform the elimination tree
           cpus[15] holds time to compute the symbolical factorization
           cpus[16] holds time to compute the numerical factorization
           cpus[17] holds TIME_INITFRONT
           cpus[18] holds TIME_EXADD
           cpus[19] holds TIME_KERNEL
           cpus[20] holds TIME_INITUPD
           cpus[21] holds time to solve the triangular systems
    o Comments:
        this is the final topmost function that can be used as a black
        box in other algorithm; it provides a general purpose direct
        solver for large sparse positive definite systems
******************************************************************************/
void
SPACE_solve(inputMtx_t *A, FLOAT *rhs, FLOAT *xvec, options_t *options,
            timings_t *cpus)
{ graph_t     *G;
  elimtree_t  *T, *T2;
  factorMtx_t *L;
  timings_t   cpusOrd[ORD_TIME_SLOTS], cpusFactor[NUMFAC_TIME_SLOTS];
  timings_t   t_graph, t_ord, t_etree, t_symb, t_num, t_solvetri;
  options_t   default_options[] = { SPACE_ORDTYPE, SPACE_NODE_SELECTION1,
                     SPACE_NODE_SELECTION2, SPACE_NODE_SELECTION3,
                     SPACE_DOMAIN_SIZE, SPACE_MSGLVL, SPACE_ETREE_NONZ };

  /* --------------------------------------------------
     set default options, if no other options specified
     -------------------------------------------------- */
  if (options == NULL)
    options = default_options;

  /* ----------------
     reset all timers
     ---------------- */
  pord_resettimer(t_graph);
  pord_resettimer(t_ord);
  pord_resettimer(t_etree);
  pord_resettimer(t_symb);
  pord_resettimer(t_num);
  pord_resettimer(t_solvetri);

  /* -----------------
     set up graph G(A)
     ----------------- */
  pord_starttimer(t_graph);
  G = setupGraphFromMtx(A);
  pord_stoptimer(t_graph);

  if (options[OPTION_MSGLVL] > 0)
    printf("\ninduced graph constructed: #vertices %d, #edges %d, #components "
           "%d\n", G->nvtx, G->nedges >> 1, connectedComponents(G));

  /* --------------------------------------------
     construct ordering/elimination tree for G(A)
     -------------------------------------------- */
  pord_starttimer(t_ord);
  T = SPACE_ordering(G, options, cpusOrd);
  pord_stoptimer(t_ord);
  freeGraph(G);

  if (options[OPTION_MSGLVL] > 0)
    printf("quality of initial elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T->nfronts, nFactorIndices(T),
           nFactorEntries(T), nFactorOps(T), nWorkspace(T));

  /* -------------------------------
     elimination tree transformation
     ------------------------------- */
  pord_starttimer(t_etree);
  T2 = SPACE_transformElimTree(T, options[OPTION_ETREE_NONZ]);
  pord_stoptimer(t_etree);
  freeElimTree(T);

  if (options[OPTION_MSGLVL] > 0)
    printf("quality of transformed elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T2->nfronts, nFactorIndices(T2),
           nFactorEntries(T2), nFactorOps(T2), nWorkspace(T2));

  /* ------------------------
     symbolical factorization
     ------------------------ */
  pord_starttimer(t_symb);
  L = SPACE_symbFac(T2, A);
  pord_stoptimer(t_symb);

  if (options[OPTION_MSGLVL] > 0)
    printf("quality of factor matrix:\n\tneqs %d, #indices %d, nzl %d\n",
           L->css->neqs, L->css->nind, L->nelem);

  /* -----------------------
     numerical factorization
     ----------------------- */
  pord_starttimer(t_num);
  SPACE_numFac(L, cpusFactor);
  pord_stoptimer(t_num);

  if (options[OPTION_MSGLVL] > 0)
    printf("performance of numerical factorization: %6.2f mflops\n",
            (double)nFactorOps(T2) / t_num / 1000000);

  /* ------------------------------
     solution of triangular systems
     ------------------------------ */
  pord_starttimer(t_solvetri);
  SPACE_solveTriangular(L, rhs, xvec);
  pord_stoptimer(t_solvetri);

  if (options[OPTION_MSGLVL] > 0)
    printf("performance of forward/backward solve:  %6.2f mflops\n",
            (double)nTriangularOps(T2) / t_solvetri / 1000000);

  freeElimTree(T2);
  freeFactorMtx(L);

  /* --------------------------------------------------
     pull back timing results, if vector cpus available
     -------------------------------------------------- */
  if (cpus != NULL)
   { cpus[0]  = t_graph;
     cpus[1]  = t_ord;
     cpus[2]  = cpusOrd[TIME_COMPRESS];
     cpus[3]  = cpusOrd[TIME_MS];
     cpus[4]  = cpusOrd[TIME_MULTILEVEL];
     cpus[5]  = cpusOrd[TIME_INITDOMDEC];
     cpus[6]  = cpusOrd[TIME_COARSEDOMDEC];
     cpus[7]  = cpusOrd[TIME_INITSEP];
     cpus[8]  = cpusOrd[TIME_REFINESEP];
     cpus[9]  = cpusOrd[TIME_SMOOTH];
     cpus[10] = cpusOrd[TIME_BOTTOMUP];
     cpus[11] = cpusOrd[TIME_UPDADJNCY];
     cpus[12] = cpusOrd[TIME_FINDINODES];
     cpus[13] = cpusOrd[TIME_UPDSCORE];
     cpus[14] = t_etree;
     cpus[15] = t_symb;
     cpus[16] = t_num;
     cpus[17] = cpusFactor[TIME_INITFRONT];
     cpus[18] = cpusFactor[TIME_EXADD];
     cpus[19] = cpusFactor[TIME_KERNEL];
     cpus[20] = cpusFactor[TIME_INITUPD];
     cpus[21] = t_solvetri;
   }
}


/*****************************************************************************
    o Input:
        sparse matrix A with permutation vector perm
        right hand side vector rhs
        options -- if NULL, default options are used
          option[0] holds OPTION_MSGLVL
          option[1] holds OPTION_ETREE_NONZ
    o Output:
        solution vector xvec of the original system Ax = b
        cpus -- if NULL, no timing information is pulled back
           cpus[0] holds time to construct the graph
           cpus[1] holds time to construct the elimination tree
           cpus[2] holds time to transform the elimination tree
           cpus[3] holds time to compute the symbolical factorization
           cpus[4] holds time to compute the numerical factorization
           cpus[5] holds TIME_INITFRONT
           cpus[6] holds TIME_EXADD
           cpus[7] holds TIME_KERNEL
           cpus[8] holds TIME_INITUPD
           cpus[9] holds time to solve the triangular systems
    o Comments: 
        this function can be used to solve an equation system
        using an externally computed permutation vector
******************************************************************************/
void
SPACE_solveWithPerm(inputMtx_t *A, PORD_INT *perm, FLOAT *rhs, FLOAT *xvec,
                    options_t *options, timings_t *cpus)
{ graph_t     *G;
  elimtree_t  *T, *T2;
  factorMtx_t *L;
  timings_t   cpusFactor[NUMFAC_TIME_SLOTS], t_graph, t_etree_construct;
  timings_t   t_etree_merge, t_symb, t_num, t_solvetri;
  options_t   default_options[] = { SPACE_MSGLVL, SPACE_ETREE_NONZ };
  PORD_INT         *invp, i, msglvl, maxzeros;

  /* --------------------------------------------------
     set default options, if no other options specified
     -------------------------------------------------- */
  if (options == NULL)
    options = default_options;
  msglvl = options[0];
  maxzeros = options[1];

  /* ----------------
     reset all timers
     ---------------- */
  pord_resettimer(t_graph);
  pord_resettimer(t_etree_construct);
  pord_resettimer(t_etree_merge);
  pord_resettimer(t_symb);
  pord_resettimer(t_num);
  pord_resettimer(t_solvetri);

  /* -----------------
     set up graph G(A)
     ----------------- */
  pord_starttimer(t_graph);
  G = setupGraphFromMtx(A);
  pord_stoptimer(t_graph);

  if (msglvl > 0)
    printf("\ninduced graph constructed: #vertices %d, #edges %d, #components "
           "%d\n", G->nvtx, G->nedges >> 1, connectedComponents(G));

  /* ---------------------------------------------------
     construct inital elimination tree according to perm
     --------------------------------------------------- */
  pord_starttimer(t_etree_construct);
  mymalloc(invp, G->nvtx, PORD_INT);
  for (i = 0; i < G->nvtx; i++)
    invp[perm[i]] = i;
  T = setupElimTree(G, perm, invp);
  pord_stoptimer(t_etree_construct);
  freeGraph(G);
  free(invp);

  if (msglvl > 0)
    printf("quality of initial elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T->nfronts, nFactorIndices(T),
           nFactorEntries(T), nFactorOps(T), nWorkspace(T));

  /* -------------------------------
     elimination tree transformation
     ------------------------------- */
  pord_starttimer(t_etree_merge);
  T2 = SPACE_transformElimTree(T, maxzeros);
  pord_stoptimer(t_etree_merge);
  freeElimTree(T);

  if (msglvl > 0)
    printf("quality of transformed elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T2->nfronts, nFactorIndices(T2),
           nFactorEntries(T2), nFactorOps(T2), nWorkspace(T2));

  /* ------------------------
     symbolical factorization
     ------------------------ */
  pord_starttimer(t_symb);
  L = SPACE_symbFac(T2, A);
  pord_stoptimer(t_symb);

  if (msglvl > 0)
    printf("quality of factor matrix:\n\tneqs %d, #indices %d, nzl %d\n",
           L->css->neqs, L->css->nind, L->nelem);

  /* -----------------------
     numerical factorization
     ----------------------- */
  pord_starttimer(t_num);
  SPACE_numFac(L, cpusFactor);
  pord_stoptimer(t_num);

  if (msglvl > 0)
    printf("performance of numerical factorization: %6.2f mflops\n",
            (double)nFactorOps(T2) / t_num / 1000000);

  /* ------------------------------
     solution of triangular systems
     ------------------------------ */
  pord_starttimer(t_solvetri);
  SPACE_solveTriangular(L, rhs, xvec);
  pord_stoptimer(t_solvetri);

  if (msglvl > 0)
    printf("performance of forward/backward solve:  %6.2f mflops\n",
            (double)nTriangularOps(T2) / t_solvetri / 1000000);

  freeElimTree(T2);
  freeFactorMtx(L);

  /* --------------------------------------------------
     pull back timing results, if vector cpus available
     -------------------------------------------------- */
  if (cpus != NULL)
   { cpus[0] = t_graph;
     cpus[1] = t_etree_construct;
     cpus[2] = t_etree_merge;
     cpus[3] = t_symb;
     cpus[4] = t_num;
     cpus[5] = cpusFactor[TIME_INITFRONT];
     cpus[6] = cpusFactor[TIME_EXADD];
     cpus[7] = cpusFactor[TIME_KERNEL];
     cpus[8] = cpusFactor[TIME_INITUPD];
     cpus[9] = t_solvetri;
   }
}


/*****************************************************************************
    o Input:
        graph G with permutation vector perm
        options -- if NULL, default options are used
          option[0] holds OPTION_MSGLVL
          option[1] holds OPTION_ETREE_NONZ
          option[2] holds OPTION_ETREE_BAL
          option[3] holds dimension of hypercube
    o Output:
        mapping object map
        cpus -- if NULL, no timing information is pulled back
           cpus[0] holds time to construct the elimination tree
           cpus[1] holds time to transform the elimination tree
           cpus[2] holds time to compute the mapping
    o Comments:
        this function can be used to obtain a mapping object for the
        parallel factorization
******************************************************************************/
mapping_t*
SPACE_mapping(graph_t *G, PORD_INT *perm, options_t *options, timings_t *cpus)
{ mapping_t *map;
  elimtree_t *T, *T2;
  timings_t  t_etree_construct, t_etree_merge, t_map;
  options_t  default_options[] = { SPACE_MSGLVL, SPACE_ETREE_NONZ,
                                   SPACE_ETREE_BAL, 2 };
  PORD_INT        *invp, i, msglvl, maxzeros, bal, dimQ;

  /* --------------------------------------------------
     set default options, if no other options specified
     -------------------------------------------------- */
  if (options == NULL)
    options = default_options;
  msglvl = options[0];
  maxzeros = options[1];
  bal = options[2];
  dimQ = options[3];

  /* ----------------
     reset all timers
     ---------------- */
  pord_resettimer(t_etree_construct);
  pord_resettimer(t_etree_merge);
  pord_resettimer(t_map);

  /* ---------------------------------------------------
     construct inital elimination tree according to perm
     --------------------------------------------------- */
  pord_starttimer(t_etree_construct);
  mymalloc(invp, G->nvtx, PORD_INT);
  for (i = 0; i < G->nvtx; i++)
    invp[perm[i]] = i;
  T = setupElimTree(G, perm, invp);
  pord_stoptimer(t_etree_construct);
  free(invp);

  if (msglvl > 0)
    printf("quality of initial elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T->nfronts, nFactorIndices(T),
           nFactorEntries(T), nFactorOps(T), nWorkspace(T));

  /* -------------------------------
     elimination tree transformation
     ------------------------------- */
  pord_starttimer(t_etree_merge);
  T2 = SPACE_transformElimTree(T, maxzeros);
  pord_stoptimer(t_etree_merge);
  freeElimTree(T);

  if (msglvl > 0)
    printf("quality of transformed elim. tree: #fronts %d, #indices %d\n\t"
           "nzl %d, ops %e, wspace %d\n", T2->nfronts, nFactorIndices(T2),
           nFactorEntries(T2), nFactorOps(T2), nWorkspace(T2));

  /* -------------------
     compute the mapping
     ------------------- */
  pord_starttimer(t_map);
  map = setupMapping(T2, dimQ, bal);
  pord_stoptimer(t_map);

  /* --------------------------------------------------
     pull back timing results, if vector cpus available
     -------------------------------------------------- */
  if (cpus != NULL)
   { cpus[0] = t_etree_construct;
     cpus[1] = t_etree_merge;
     cpus[2] = t_map;
   }

  /* --------------------------------------------------------------
     return mapping object (don't free T2, since it belongs to map)
     -------------------------------------------------------------- */
  return(map);
}
#endif